Select Language
アクセス数 Since 2009
今日 : 391
昨日 : 1073
今月 : 43651
総計 : 2541204
平均 : 646
Who am I ?
初貝 安弘 ORCID iD icon
物理学専攻 教授
会議 & 研究会
TAG index
ResercherID: Y.Hatsugai

第64回応用物理学会春季学術講演会, パシフィコ横浜, March 14-17 (2017)

[15p-E205-4] 半導体カイラルフォトニック結晶におけるワイル点とトポロジカルエッジ状態

高橋 駿1、大野 修平2、岩本 敏1,3、初貝 安弘2、荒川 泰彦1,3 (1.東大ナノ量子機構、2.筑波大院数理、3.東大生研)

[P] APS March Meeting 2017 Monday–Friday, March 13–17, 2017; New Orleans, Louisiana, USA
[P] CPEC seminar, Univ. Tokyo, March 9 (2017)

今年もやります。まずは量子力学3(遠隔). 冬は 統計力学2 改め物性理論II (大学院「ベリー接続の理論とバルクエッジ対応」). 令和二年の新年あけましておめでとうございます。今年もあと67日!
投稿者 : hatsugai 投稿日時: 2020-10-01 16:07:56 (172 ヒット)

Motivated by a historical example, the Dirac Hamiltonian as a square-root of the Klein-Gordon Hamiltonian, its lattice analogue has been discussed recently. Zero energy states are shared by the parent and its descendant. The story is more than that. Not necessarily zero energy but its high energy part can also share topological characters. We hereby propose a “square-root higher order topological insulator (square-root HOTI)” when its squared parent is HOTI. Based on the simple observation that square of the decorated honeycomb lattice is given by a decoupled sum of the Kagome and honeycomb lattices, we have demonstrate that the “corner states” of the breezing Kagome lattice with boundaries share topological characters with its descendant as the decorated honeycomb lattice. Have a look at our recent paper just published online, "Square-root higher-order topological insulator on a decorated honeycomb lattice" by Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai, Phys. Rev. A 102, 033527 (2020), also arXiv:2004.03235.

投稿者 : hatsugai 投稿日時: 2020-09-17 11:42:01 (94 ヒット)

As for a topological characterization of a full Liouvillian (including jump term) for the non hermitian fractional quantum Hall states, we are proposing a pseudospin Chern number associated with the Niu-Thouless-Wu type twists in the doubled Hilbert space. Numerical demonstration of the proposal is explicitely given and its validity is discussed. Have a look at "Fate of fractional quantum Hall states in open quantum systems: Characterization of correlated topological states for the full Liouvillian" by Tsuneya Yoshida, Koji Kudo, Hosho Katsura, and Yasuhiro Hatsugai, Phys. Rev. Research 2, 033428 (2020) (open access).

投稿者 : hatsugai 投稿日時: 2020-09-17 11:06:17 (107 ヒット)

The Dirac cone is a typical singular energy dispersion in two dimensions that is a source of various non-trivial topological effects. When realized in real/synthetic materials, it is generically tilted and the equi-energy surface (curve) can be elliptic/hyperbolic (type I/II). The type III Dirac cone is a critical situation between the type I and II that potentially causes various non-trivial physics. As for realization of the type III Dirac cones, we are proposing a generic theoretical scheme without any fine tuning of material parameters . It may also help to synthesize in meta materials. The molecular orbital (MO) construction of the generic flat bands which we are also proposing plays a crutial role. Have a look at "Type-III Dirac Cones from Degenerate Directionally Flat Bands: Viewpoint from Molecular-Orbital Representation" by Tomonari Mizoguchi and Yasuhiro Hatsugai, J. Phys. Soc. Jpn. 89, 103704 (2020) Also arXiv:2007.14643.

投稿者 : hatsugai 投稿日時: 2020-08-16 14:53:28 (255 ヒット)

Adiabatic deformation of gapped systems is a conceptual basis of topological phases. It implies that topological invariants of the bulk described by the Berry connection work as topological order parameters of the phase. This is independent of the well-established symmetry breaking scenario of the phase characterization. Adiabatic heuristic argument for the fractional quantum Hall states is one of the oldest such trials that states the "FRACTIONAL" state is deformed to the “INTEGER”. Although it is intuitive and physically quite natural, there exist several difficulties. How the states with different degeneracy are deformed each other adiabatically? We have clarified the questions and demonstrated this adiabatic deformation on a torus in the paper "Adiabatic heuristic principle on a torus and generalized Streda formula" by Koji Kudo and Yasuhiro Hatsugai , Phys. Rev. B 102, 125108 (2020) (also arXiv:2004.00859) What is deformed continuously is a gap not the states ! This is also sufficient for the topological stability of the Chern number (of the degenerate multiplet) as a topological order parameter. Have a look at.

投稿者 : hatsugai 投稿日時: 2020-07-30 12:47:16 (239 ヒット)

Our article on non-hermitian band touching for strongly correlated systems has been published in PTEP (Progress of Theoretical and Experimental Physics), "Exceptional band touching for strongly correlated systems in equilibrium", by Tsuneya Yoshida, Robert Peters, Norio Kawakami, Yasuhiro Hatsugai. Focusing on the non-hermitian topological phenomena for the equilibrium Green function of correlated electrons, a compact review of the exceptonal band touching that is intrinsic for non-hermitian matrices is described as well. Have a look at.

    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    Web記事 アーカイブ