Chiral-symmetry protected second-order topological phases

Ryo Okugawa
WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University

Second-order topological insulators have drawn research interests as new topological phases. While many of the nontrivial second-order topology stem from crystal symmetry, second-order topological phases are realizable within the Altland-Zirnbauer classes [1-3]. However, it is generally difficult to construct the second-order topological phases without using crystal symmetries because we have to investigate not only the bulk topology but also the edge/surface topology.

In this presentation, we discuss second-order topological phases protected only by chiral symmetry [4]. We first introduce a simple method to construct two-dimensional second-order topological insulators protected by chiral symmetry [2,3], and study the topological phase transitions. By using the theory of the phase transition, we propose second-order topological semimetals with hinge states in three-dimensional chiral-symmetric systems. Various second-order topological semimetals can be obtained from the stacked two-dimensional second-order topological insulators. We show that one of the topological semimetals is unique to three-dimensional systems with chiral symmetry. Moreover, we show that broken chiral symmetry can realize a second-order topological insulator from the second-order topological semimetal. Finally, we demonstrate the second-order topological phases by constructing a lattice model.


Contact : T. Yoshida 吉田 恒也 Tel:029-853-4535 Email: yoshida@rhodia.ph.tsukuba.ac.jp