Select Language
アクセス数 Since 2009
今日 : 1712
昨日 : 1711
今月 : 41721
総計 : 2482604
平均 : 637
Who am I ?
初貝 安弘 ORCID iD icon
筑波大学
筑波大学大学院
数理物質科学研究科
物理学専攻 教授
初貝写真
Yasuhiro-Nov11-2009
会議 & 研究会
グーグル検索:初貝
TAG index
ResercherID: Y.Hatsugai
Project
メインメニュー

Web 記事 - 201003のエントリ

皆さんは物理学に対して色々なイメージを持っていると思いますが、この機会に物理学が大事にしてきたものについて、少し説明してみたいと思います。物理学の研究者には多くのタイプがありますから、「これ」と一つだけをとり上げることは簡単ではありませんが,「普遍性」(英語ではUniversalityと呼びます) は物理学の多くの分野にわたって最も重要な概念の一つであることは間違いありません。文字通りの意味では広く遍く(あまねく)存在する概念ということです。自然科学とは自然を科学的手法で理解する営みで、物理学、化学、生物学,材料科学などがその代表的なものです。これらの学問はお互いに必ずしも排他的な関係にあるわけではなく、ある研究は物理学と化学の両面をもつなどということも珍しくありません。物理化学、生物物理学等という表現はそれをわかりやすく示しています。にも関わらず物理学がとりわけ特に大事にしている概念が「普遍性」です。これについて以下詳しく議論しましょう。

「普遍性」(Universality)という言葉は説明しましたが、ある意味で対極的な概念が「多様性」(diversity)です。科学には博物学的側面が必ずありますから、科学的研究活動においては、多くの種々雑多な対象を集め、それぞれの学問の手法で記述することから学問は始まります。対象の多様性を追求し、その中で興味深いもの、役に立つものなどを種々の観点から追い求めるのです。対象の多様性を楽しむわけです。自然科学の中でも、材料科学、薬学等ではこの多様性が本質的に重要でしょう。もちろん、物理学も自然界の中の種々の対象を記述するわけですから多様性ももちろん重要ですが、物理学の特徴は、多種多様な対象の中に多様性を楽しむだけでなく普遍的な性質を見出すことにあります。物理学は普遍性を極限までに追求する学問とも言えるでしょう。

では、具体的には普遍性とは何を指すのでしょうか?皆さんは大学に入るとすぐに物理学Aという科目で「質点の力学」を学びます。高校でも質点の力学は学んでいるでしょうから、馴染み深い科目といえるでしょう。実は、この質点の力学は普遍性が最もわかり易い形で現れた分野ということができます。この質点とはなんでしょうか?点ですから大きさはありません。点であってかつ質量はある「モノ」(object)を質点と呼びます。もちろん、大きさはなく質量だけをもつものなんて現実の世界にはひとつもありません。では質点の力学は現実に存在しないものの力学を扱うナンセンスな学問なのでしょうか?そんなことをいうと「いろいろなものの運動は近似的に質点として扱えるんだよ」という声が聞こえてきそうです。文字通りの意味では、全くそのとおりですが、普遍性を最重要と考える物理学としては、それだけでは本質的に大事な点を全く理解していないことになります。

自然界の力学的な運動を例として考えたとき、そこには多種多様な対象の種々の運動があることに注意しましょう。野球のボールの運動、自転車の運動、そして原子、電子,原子核の運動、また、地球の太陽周りの運動、銀河の運動、宇宙全体の運動もすべて物理学が対象とする力学運動です。これら全く異なる運動が、質点の力学として共通して捉えることにより、普遍的に理解することができるのです。ボールの色、原子の種類、銀河の形、含む星の数等をすべて切り捨て、対象の個性としては唯一の「質量」のみを取り出したとき、これらの異なる対象の力学的運動は「質点とそれに働く力」で記述される共通のニュートンの運動法則に従うと考えることができるのです。全く異なる自然の中に、質点としての「質量」だけを対象の個性として、普遍的な運動の原理を見いだすわけです。これが物理学の大事にする普遍性です。

一見似ていますが,普遍性を大切にする立場からは、質量以外の個性を切り捨てる過程は「近似」ではなく「情報の縮約」と呼びます。これは個々の現象において何が大切なのかを見極める最も大切な過程です。物理学は運動方程式の解き方を学ぶ学問ではなく、自然界の現象を如何に記述するかを大事にする学問なのです。勿論、情報の縮約の過程は決して自明な過程ではありません。現象において何が重要なのかを正確に見極めることが必要な困難な過程です。現在の物理学においては、この「情報の縮約」のための方法論も、必ずしも万能ではありませんが,いくつも開発されています。ここでは「繰り込み」と呼ばれる概念がそのひとつの例であることを注意しておきます。

この情報の縮約の過程で、その物理学的認識に関する適用限界も自ずと明らかとなります。力学の例で言えば運動法則に関して適用限界があるのです。個々の物理学的法則には、それぞれ、時間スケール、エネルギースケール、空間スケール等に関して適用すべき領域があるのです。「何だ、近似か」などと考えてはいけません。適切なスケール、これを階層と呼べば、階層ごとに適切な物理法則を見出し、その階層をつなぐことが物理学の手法であり、物理学的な自然認識なのです。ニュートン力学は光速に近い運動には適用できず、相対論による記述が必要であること、また原子、電子といったミクロな世界の記述では量子論的記述が必要なことを、皆さんもどこかで聞いたことがあると思います。しかし、現在でもニュートン力学の重要性は失われるどころか、ますます多様な現象に適用されていることは皆さんもご存知でしょう。日本の新幹線や地下鉄があれだけ正確で、自立型のロボットや自動化された工場の生産設備はすべてニュートン力学の完全な支配化にあります。たとえ、極微の世界の運動法則としての、究極の理論が完成したとしても階層的認識に基づく、ニュートン力学他、各階層の物理法則の意義は失われることはありません。電車の動きに量子論を適用することは無意味であるだけでなく、量子論は電車や飛行機の運動の記述には全く無力なのです。

スペースもつきましたので続きは物理学の講義でということにしますが、階層的な物理学的認識の意義と物理学における普遍性の重要性に気づいてもらえれば幸いです。物理学はあれこれ計算する学問ではなく、とことんまで考える学問なのです。
 

 

モバイル機器でご覧の方
現在の時刻
今年もやります。まずは量子力学3(遠隔). 冬は 統計力学2 改め物性理論4 (大学院「ベリー接続の理論とバルクエッジ対応」). 令和二年の新年あけましておめでとうございます。今年もあと102日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2020-09-17 11:42:01 (22 ヒット)

As for a topological characterization of a full Liouvillian (including jump term) for the non hermitian fractional quantum Hall states, we are proposing a pseudospin Chern number associated with the Niu-Thouless-Wu type twists in the doubled Hilbert space. Numerical demonstration of the proposal is explicitely given and its validity is discussed. Have a look at "Fate of fractional quantum Hall states in open quantum systems: Characterization of correlated topological states for the full Liouvillian" by Tsuneya Yoshida, Koji Kudo, Hosho Katsura, and Yasuhiro Hatsugai, Phys. Rev. Research 2, 033428 (2020) (open access).


投稿者 : hatsugai 投稿日時: 2020-09-17 11:06:17 (35 ヒット)

The Dirac cone is a typical singular energy dispersion in two dimensions that is a source of various non-trivial topological effects. When realized in real/synthetic materials, it is generically tilted and the equi-energy surface (curve) can be elliptic/hyperbolic (type I/II). The type III Dirac cone is a critical situation between the type I and II that potentially causes various non-trivial physics. As for realization of the type III Dirac cones, we are proposing a generic theoretical scheme without any fine tuning of material parameters . It may also help to synthesize in meta materials. The molecular orbital (MO) construction of the generic flat bands which we are also proposing plays a crutial role. Have a look at "Type-III Dirac Cones from Degenerate Directionally Flat Bands: Viewpoint from Molecular-Orbital Representation" by Tomonari Mizoguchi and Yasuhiro Hatsugai, J. Phys. Soc. Jpn. 89, 103704 (2020) Also arXiv:2007.14643.


投稿者 : hatsugai 投稿日時: 2020-09-08 20:05:59 (44 ヒット)

Motivated by a historical example, the Dirac Hamiltonian as a square-root of the Klein-Gordon Hamiltonian, its lattice analogue has been discussed recently. Zero energy states are shared by the parent and its descendant. The story is more than that. Not necessarily zero energy but its high energy part can also share topological characters. We hereby propose a “square-root higher order topological insulator (square-root HOTI)” when its squared parent is HOTI. Based on the simple observation that square of the decorated honeycomb lattice is given by a decoupled sum of the Kagome and honeycomb lattices, we have demonstrate that the “corner states” of the breezing Kagome lattice with boundaries share topological characters with its descendant as the decorated honeycomb lattice. Have a look at our recent paper, "Square-root higher-order topological insulator on a decorated honeycomb lattice" by Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai, to appear in Phys. Rev. A, also arXiv:2004.03235.


投稿者 : hatsugai 投稿日時: 2020-08-16 14:53:28 (171 ヒット)

Adiabatic deformation of gapped systems is a conceptual basis of topological phases. It implies that topological invariants of the bulk described by the Berry connection work as topological order parameters of the phase. This is independent of the well-established symmetry breaking scenario of the phase characterization. Adiabatic heuristic argument for the fractional quantum Hall states is one of the oldest such trials that states the "FRACTIONAL" state is deformed to the “INTEGER”. Although it is intuitive and physically quite natural, there exist several difficulties. How the states with different degeneracy are deformed each other adiabatically? We have clarified the questions and demonstrated this adiabatic deformation on a torus in the paper "Adiabatic heuristic principle on a torus and generalized Streda formula" by Koji Kudo and Yasuhiro Hatsugai , Phys. Rev. B 102, 125108 (2020) (also arXiv:2004.00859) What is deformed continuously is a gap not the states ! This is also sufficient for the topological stability of the Chern number (of the degenerate multiplet) as a topological order parameter. Have a look at.


投稿者 : hatsugai 投稿日時: 2020-07-30 12:47:16 (163 ヒット)

Our article on non-hermitian band touching for strongly correlated systems has been published in PTEP (Progress of Theoretical and Experimental Physics), "Exceptional band touching for strongly correlated systems in equilibrium", by Tsuneya Yoshida, Robert Peters, Norio Kawakami, Yasuhiro Hatsugai. Focusing on the non-hermitian topological phenomena for the equilibrium Green function of correlated electrons, a compact review of the exceptonal band touching that is intrinsic for non-hermitian matrices is described as well. Have a look at.


    検索
    バルク・エッジ対応
    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    トポロジカル相
    [0]昔の科研費
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    私の講演ファイルのいくつか
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    最新のエントリ
    Web記事 アーカイブ