Select Language
アクセス数 Since 2009
今日 : 1664
昨日 : 1711
今月 : 41673
総計 : 2482556
平均 : 637
Who am I ?
初貝 安弘 ORCID iD icon
筑波大学
筑波大学大学院
数理物質科学研究科
物理学専攻 教授
初貝写真
初貝-small.jpg
会議 & 研究会
グーグル検索:初貝
TAG index
ResercherID: Y.Hatsugai
Project
メインメニュー

Web 記事 - グラフェンカテゴリのエントリ

久しぶりにグラフェンとは?

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2013-9-16 23:19
グラフェンとは炭素原子が蜂の巣格子状に結晶化した2次元つまり絨毯状の 物質である。単体の炭素にはグラファイト、ダイヤモンド、C60等 幾つもの同素体 が存在するが、 グラフェンもその1つである。 蜂の巣格子は 周期格子であるが、ある単位胞を2次元の並進操作で並べて蜂の巣格子を つくるとき、単位胞には必ず2種類の原子が含まれる。よって固体物理学の一般論に 従えば、そのエネルギーバンドは2つからなり、中性のグラフェンは 半導体(絶縁体)となるはずであるが、 実際のグラフェンは、種々の意味で対称性が 高く、そのバンドギャップは消失し、ゼロギャップ半導体となる。 よって通常の半導体において使われる有効質量近似は破綻し その有効理論は P. Dirac が特殊相対論と整合的な量子力学のために導入したDirac 方程式の2次元版 となり、 特異な物理現象が期待されていた。 その一方で、ランダウ以来の結晶の安定性の理論によると1,2次元のマクロな完全結晶は 熱力学的に不安定であり、存在し得ないと考えられていた。 それにも、関わらず英国マンチェスター大学の A.Geim と K. Novoselov は剥離法という 驚くべき手法で実際にマクロで単層のグラフェンを合成することに成功し、 その功績により2010年のノーベル物理学賞を受賞した。百聞は一見にしかずである。 ゼロギャップ半導体である グラフェンのフェルミエネルギー近くでの エネルギー分散は$E=\pm cp$ と相対論的な形となるが「光速$c$」は光の速度$c_{light}$ではなく$c\sim c_{light}/300$と実際の光速より大幅に小さい(遅い光!)。 よって、グラフェン中の電子が動き回る世界は、 まさに G. Gamow の不思議の国のトンプキンスが住む 「遅い光」の世界である。グラフェンで観測された原子崩壊はその一つの例である。

2次元固体の安定性とリップル

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2009-12-18 8:33

グラフェンとは炭素原子が平面上で蜂の巣の形に規則的に整列したものですから、炭素原子が規則正しくならんだ絨毯のようなものです。もちろんこの 絨毯の大きさは有限ですが、電子間の距離を単位にしてはかれば十分に大きいので、無限に広がった規則的な原子の絨毯です。このグラフェンは別に低温にしな ければできないわけではなく、常温で作成されました。具体的にはscotch tape method (日本語ならセロテープ法) といわれる怪しげな(と当初はおもわれた)方法で実際につくられました(Novoselov, Geim 他)。常温ですから当然熱ゆらぎも無視できないはずですからグラフェンはきわめて安定な物質と考えられます。ところが理論的には古くから完全な2次元 固体は安定に存在できないと信じられていました。規則正しい周期的な構造が存在するためには、どこかで偶発的に生まれた乱れが全体に広がってしまわないことが必要ですが、2次元という低次元性の為、無限と思われるぐらいに大きな2次元結晶では、これらの勝手にうまれたゆらぎはどんどん増殖してめちゃくちゃな状態になってしまうと予想されていたのです。しかし、論より証拠とはこのことで、いくら理屈を言ったところで、現実に作ってみせたのですから、文句の言いようがありません。理屈の方がどこか間違っていたか、議論が不十分だったのです。

 実際の単層のグラフェンは完全に真平らではなく、下の図のようにうねうねしていると考えられています。2次元は2次元でも3次元の中に埋め込まれた2次元系ですので、このようなことが可能なわけです。この「うねうね」構造はリップルと呼ばれ、単層グラフェン、特に基板等何かの上に乗っていないという意味で、free standing なグラフェンの特徴的構造と考えられています。今日では、グラフェンでは、2次元周期系ではあるものの、このような3次元方向の変形からくる余分な自由度がある種の熱浴として働き、2次元格子全体がめちゃくちゃになるのを防いでいると考えられています。さらにこのリップルはグラフェンの電子状態に関しては、ランダムゲージ場として働くとかんがえられており、グラフェンの物理をより一層興味深いものとしています。

 事実は小説より奇なり(Fact is stranger than fiction)ではありませんが、現実は常識を時々そして大事なところで覆してくれます。物理屋たる者、定説をそのまま信じてはダメですね、ロシア人は確かにガンコでシツコイ!(Road to Stockholm がホントかどうかは別にして)

グラフェンとは?

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2009-12-1 8:10

グラフェンってきいたことありますか?
物理関係の方は化学が苦手だったかもしれませんが、その中でも化学の代名詞であるかめのこ記号、すなわちベンゼン環からできている物質、炭素原子だけがあつまってできた物質がグラフェンです。グラフェンは、grapheneとつづりますが、これからおわかりのようにこの物質は芳香族の物質であり、一言でいえ ばベンゼン環が集まったものと考えることができます。


化学が得意の方にはおわかりとはおもいますが、芳香族の物質を分子量が小さいものからすこし列挙すれば、ベンゼン環1つのBenzen,ベンゼン環2つの Naphthalene,3つのanthracene, tetracene, pentacene,... と一連の物質群が続きます。グラフェン(graphene)とはその名の通りこの芳香族の2次元極限として2次元 sp2電子の炭素の2次元ネットワークが、2次元平面上無限につながったものなのです。またこれをくるりとまるめればカーボンナノチューブができあがります。


炭素は、単体の共有結合としてsp1,  sp2,  sp3 と多様な形態をとり、それぞれ、1次元、2次元、3次元の構造をつくりますが、これらに対応する自然な物質が、1次元のポリアセチレン、2次元のグラフェ ン、3次元のダイヤモンドと考えられますので、発見はおそかったのですが、極めて典型的な物質とさえいえます。

 

じつは、理科系の研究者であれば、どこかで「グラフェン」の名前ぐらいは聞いたことがあるような時代になってすでに久しいのですが、近年のグラフェンの研究 の爆発は、2005年のGeim,Novoselov等グループによる実験的合成とそこでの特異かつ極めて特徴的な量子ホール 効果の発見以来のものです。

このように構造としては基本的なのですが、 その電子構造はきわめて特異であって半導体なのですが、そのエネルギーギャップがゼロであるというゼロギャップ半導体と考えられます。通常の半導体、金属 中の電子はいわゆる有効質量近似によって質量が繰り込まれた量子的な自由粒子とかんがえられますが、ゼロギャップ半導体であるグラフェンではこれが成立せ ず有効理論はギャップレスのDirac 電子となります。Dirac の理論では負のエネルギーの電子が現象に現れないようにするため。負のエネルギー状態はすべて占有されていると考えました。これがDiracの海と呼ばれ るものですが、グラフェンの場合このDiracの海は占有された価電子バンドに他なりません。Dirac の議論は量子論を特殊相対論と整合的にするために考えられたものですので、Dirac 電子は相対論的な粒子です。その意味でグラフェンは物質中の(実は鉛筆中の)相対論的粒子と考えられます。これが近年の研究爆発の一つの理由です。個々の 興味深い物理現象に関してはまた節をかえてご説明したいと思います。


この数年グラフェンの会議で話をする機会が何度かあったのですが、その度に近年の研究状況を紹介する一つのデータとして、ネット上の論文cond-mat の検索機能findでその時点での過去1年間のタイトルにgrapheneを含む投稿論文数を検索したのですが、それは以下のようになっています。
89個(2006年),
269個(2007年),
504個(2008年)。
本日2009年に同じ検索をやってみると563個(2009年)と言うことですから、この数年は毎日1から2個はグラフェンと名のつく論文がネット上に挙げられているわけです。これを見ても、グラフェン関連の研究はまさに爆発的な状況にあることが見てとれるます。

振り返ると、この物質に関する研究は少なくともGeim等による実験的合成以前からあり、その特異な電子構造を指摘したWallaceの論文をはじめ、単 層のグラファイトとしていくつもの研究があることは思い出しておきたいとおもいます。ただしgrapheneという名前はありませんでした。うまい名前を つけることはやはり大事ですね、

モバイル機器でご覧の方
現在の時刻
今年もやります。まずは量子力学3(遠隔). 冬は 統計力学2 改め物性理論4 (大学院「ベリー接続の理論とバルクエッジ対応」). 令和二年の新年あけましておめでとうございます。今年もあと102日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2020-09-17 11:42:01 (22 ヒット)

As for a topological characterization of a full Liouvillian (including jump term) for the non hermitian fractional quantum Hall states, we are proposing a pseudospin Chern number associated with the Niu-Thouless-Wu type twists in the doubled Hilbert space. Numerical demonstration of the proposal is explicitely given and its validity is discussed. Have a look at "Fate of fractional quantum Hall states in open quantum systems: Characterization of correlated topological states for the full Liouvillian" by Tsuneya Yoshida, Koji Kudo, Hosho Katsura, and Yasuhiro Hatsugai, Phys. Rev. Research 2, 033428 (2020) (open access).


投稿者 : hatsugai 投稿日時: 2020-09-17 11:06:17 (35 ヒット)

The Dirac cone is a typical singular energy dispersion in two dimensions that is a source of various non-trivial topological effects. When realized in real/synthetic materials, it is generically tilted and the equi-energy surface (curve) can be elliptic/hyperbolic (type I/II). The type III Dirac cone is a critical situation between the type I and II that potentially causes various non-trivial physics. As for realization of the type III Dirac cones, we are proposing a generic theoretical scheme without any fine tuning of material parameters . It may also help to synthesize in meta materials. The molecular orbital (MO) construction of the generic flat bands which we are also proposing plays a crutial role. Have a look at "Type-III Dirac Cones from Degenerate Directionally Flat Bands: Viewpoint from Molecular-Orbital Representation" by Tomonari Mizoguchi and Yasuhiro Hatsugai, J. Phys. Soc. Jpn. 89, 103704 (2020) Also arXiv:2007.14643.


投稿者 : hatsugai 投稿日時: 2020-09-08 20:05:59 (44 ヒット)

Motivated by a historical example, the Dirac Hamiltonian as a square-root of the Klein-Gordon Hamiltonian, its lattice analogue has been discussed recently. Zero energy states are shared by the parent and its descendant. The story is more than that. Not necessarily zero energy but its high energy part can also share topological characters. We hereby propose a “square-root higher order topological insulator (square-root HOTI)” when its squared parent is HOTI. Based on the simple observation that square of the decorated honeycomb lattice is given by a decoupled sum of the Kagome and honeycomb lattices, we have demonstrate that the “corner states” of the breezing Kagome lattice with boundaries share topological characters with its descendant as the decorated honeycomb lattice. Have a look at our recent paper, "Square-root higher-order topological insulator on a decorated honeycomb lattice" by Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai, to appear in Phys. Rev. A, also arXiv:2004.03235.


投稿者 : hatsugai 投稿日時: 2020-08-16 14:53:28 (171 ヒット)

Adiabatic deformation of gapped systems is a conceptual basis of topological phases. It implies that topological invariants of the bulk described by the Berry connection work as topological order parameters of the phase. This is independent of the well-established symmetry breaking scenario of the phase characterization. Adiabatic heuristic argument for the fractional quantum Hall states is one of the oldest such trials that states the "FRACTIONAL" state is deformed to the “INTEGER”. Although it is intuitive and physically quite natural, there exist several difficulties. How the states with different degeneracy are deformed each other adiabatically? We have clarified the questions and demonstrated this adiabatic deformation on a torus in the paper "Adiabatic heuristic principle on a torus and generalized Streda formula" by Koji Kudo and Yasuhiro Hatsugai , Phys. Rev. B 102, 125108 (2020) (also arXiv:2004.00859) What is deformed continuously is a gap not the states ! This is also sufficient for the topological stability of the Chern number (of the degenerate multiplet) as a topological order parameter. Have a look at.


投稿者 : hatsugai 投稿日時: 2020-07-30 12:47:16 (163 ヒット)

Our article on non-hermitian band touching for strongly correlated systems has been published in PTEP (Progress of Theoretical and Experimental Physics), "Exceptional band touching for strongly correlated systems in equilibrium", by Tsuneya Yoshida, Robert Peters, Norio Kawakami, Yasuhiro Hatsugai. Focusing on the non-hermitian topological phenomena for the equilibrium Green function of correlated electrons, a compact review of the exceptonal band touching that is intrinsic for non-hermitian matrices is described as well. Have a look at.


    検索
    バルク・エッジ対応
    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    トポロジカル相
    [0]昔の科研費
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    私の講演ファイルのいくつか
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    最新のエントリ
    Web記事 アーカイブ