Select Language
アクセス数 Since 2009
今日 : 353
昨日 : 300
今月 : 5349
総計 : 1509789
平均 : 522
Who am I ?
初貝 安弘
筑波大学
理工学群副学群長
数理物質系物理学域
筑波大学大学院
数理物質科学研究科
物理学専攻 教授
学際物質科学研究センター(TIMS)教授
初貝写真
Yasuhiro-Nov11-2009
会議 & 研究会
グーグル検索:初貝
TAG index
ResercherID: Y. Hatsugai
Project
メインメニュー
リンク

Web 記事 - 断熱定理

断熱定理

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2010-1-28 21:03

 原子(アトム)とはギリシャ時代に物質をどんどん細かく分けていくとあるところで、これ以上は分けられないもの、分けてしまうと性質が変わってしてしまうものとして、観念的(哲学的)に考えられたものですが,量子力学の量子とはこれと類似のある何か基本的なを意味します。例として信号機の赤色の光を考えてみましょう。信号の出力を絞っていくとどんどん暗くなりますが、光を量子論的に考えるといくらでも暗くできるのではなく、限界があることとなります。赤色の光にはその基本的な単位つまり量子があるのです。この光の量子はプランクにより光量子仮説として、ある実験の解釈のために導入されましたが、現在では確固たる実験事実となっています。赤色の光を検出器で測りながらどんどん暗くするとあるところで、検出器は連続して光を検出しなくなり、ポツポツと不連続に出力を出すようになります。光の量子をフォトンといいますが、この領域の検出器はフォトンカウンターつまり光量子の数を数える計測器となるのです。

 もう少し広く量子とはquantum jupm等と使われることからわかるように不連続性を意味します。光量子は1個、2個,3個と不連続な整数個しかありえないわけで光量子1.2個が観測されることはないのです。表題の断熱定理とはこの不連続性に関係します。物理的な系が時間的に変化しないある量子状態にあるとしましょう(定常状態といいます)。この状態は例えば光量子2個の状態のように他の量子状態(例えば光量子3個の状態)とは不連続にしか変化できないとします。外界からエネルギーをもらわないと他の定常状態に移動(遷移といいます)できないわけですが、不連続性に対応してこの状態の変化に必要なエネルギーは有限の大きさとなります。光量子1個分のエネルギーをもらわないと光量子が2個の状態から3個の状態には変化できないわけです。今、物理系は定常状態、つまり時間的に変化しない状態にあると仮定していますが、この系をゆっくり変化させることを考えてみましょう。できるだけそーーと、無限にゆっくりと変化させることを考えましょう。2個光量子の入った箱をゆっくり動かすようなものです。ここで動かすためには外界からエネルギーを注入しなければ成りませんが他の状態に移り変わるためには「量子」に対応するだけの有限の大きさのエネルギーが必要となることを思い出しましょう。ゆっくり動かすときゆっくりであればあるだけ外界からの外乱によるエネルギーの流入は少ないわけですから、量子に対応するエネルギーに比べてこの外乱のエネルギーを小さくすれば、つまりゆっくり動かせば系はほとんど移動に伴なう外乱の影響を受けないこととなります。つまり、「量子化された定常状態にある系は系を無限にゆっくり動かすとき状態が変化しない」こととなります。これがボルン、フォン・ノイマン等により定式化された断熱定理とよばれる主張です。ここで系が量子化されていることつまり他の状態と有限のエネルギーをもって分離されていることが重要です。物理的な考察では単に「ゆっくりと」というだけでは意味ある主張はできません何に対してゆっくりなのかを示さなければなりませんが、ここでは他の状態とのエネルギー差(ギャップといいます)を基準にして移動にともなう外乱のエネルギーを極めて小さくするというわけです。ギャップがあれば断熱定理が成立するのです。

トラックバック

トラックバックpingアドレス http://rhodia.ph.tsukuba.ac.jp/~hatsugai/modules/d3blog/tb.php/21
モバイル機器でご覧の方
現在の時刻
今年もやります。まずは量子力学3. 冬は 統計力学2. 平成29年の新年あけましておめでとうございます。今年もあと44日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2017-10-06 16:36:02 (65 ヒット)

The entanglement Chern numbers is a Chern number of an entanglement Hamiltonian which characterizes topological properties of a topological phase. Starting from a pure state density matrix of the ground state, one may obtain finite temperature (mixed state) density matrix by tracing out parts of the system. If the entanglement hamiltonian has a finite energy gap, the Chern number is well defined by lowering the temperature. We apply the concept for the 3D topological phases.The parity of the number of the Weyl point gives a well defined topological number to distinguish the the state is topologically non trivial. Have a look at arXiv 1708.03722 . The paper has been accepted for publication in Physical Review B.


投稿者 : hatsugai 投稿日時: 2017-08-17 17:01:30 (295 ヒット)

初貝研究室では今回助教2名を公募いたします(公募締め切り2017年9月15日)。委細は [助教公募] をご確認ください。適任者のご推薦、ご応募の方よろしくお願いいたします。


投稿者 : hatsugai 投稿日時: 2017-08-17 17:00:09 (333 ヒット)

We are organizing a Japan-Swiss workshop TTCM2017 at EPOCHAL Tsukuba, Sep.10-13 (2017). Limited number of posters will be still accepted.


投稿者 : hatsugai 投稿日時: 2017-08-03 13:38:17 (256 ヒット)

A numerical scheme to calculate the many body Chern number for a ground state multiplet is formulated and explicitly given for projected bands of any lattice. We demonstrate its validity for lattice analogue of the nu=1/3 and 1/2 states. The string gauge to realize the minimum flux compatible with the periodicity of the unit cell is also presented. [arXiv:1707.06722]. The paper is published in JPSJ lett.



    検索
    バルク・エッジ対応
    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    トポロジカル相
    [0]昔の科研費
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    私の講演ファイルのいくつか
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    最新のエントリ
    Web記事 アーカイブ