Select Language
アクセス数 Since 2009
今日 : 2691
昨日 : 3542
今月 : 20479
総計 : 2390967
平均 : 621
Who am I ?
初貝 安弘 ORCID iD icon
筑波大学
筑波大学大学院
数理物質科学研究科
物理学専攻 教授
初貝写真
Yasuhiro-Nov11-2009
会議 & 研究会
グーグル検索:初貝
TAG index
ResercherID: Y.Hatsugai
Project
メインメニュー

Web 記事 - 2次元固体の安定性とリップル

2次元固体の安定性とリップル

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2009-12-18 8:33

グラフェンとは炭素原子が平面上で蜂の巣の形に規則的に整列したものですから、炭素原子が規則正しくならんだ絨毯のようなものです。もちろんこの 絨毯の大きさは有限ですが、電子間の距離を単位にしてはかれば十分に大きいので、無限に広がった規則的な原子の絨毯です。このグラフェンは別に低温にしな ければできないわけではなく、常温で作成されました。具体的にはscotch tape method (日本語ならセロテープ法) といわれる怪しげな(と当初はおもわれた)方法で実際につくられました(Novoselov, Geim 他)。常温ですから当然熱ゆらぎも無視できないはずですからグラフェンはきわめて安定な物質と考えられます。ところが理論的には古くから完全な2次元 固体は安定に存在できないと信じられていました。規則正しい周期的な構造が存在するためには、どこかで偶発的に生まれた乱れが全体に広がってしまわないことが必要ですが、2次元という低次元性の為、無限と思われるぐらいに大きな2次元結晶では、これらの勝手にうまれたゆらぎはどんどん増殖してめちゃくちゃな状態になってしまうと予想されていたのです。しかし、論より証拠とはこのことで、いくら理屈を言ったところで、現実に作ってみせたのですから、文句の言いようがありません。理屈の方がどこか間違っていたか、議論が不十分だったのです。

 実際の単層のグラフェンは完全に真平らではなく、下の図のようにうねうねしていると考えられています。2次元は2次元でも3次元の中に埋め込まれた2次元系ですので、このようなことが可能なわけです。この「うねうね」構造はリップルと呼ばれ、単層グラフェン、特に基板等何かの上に乗っていないという意味で、free standing なグラフェンの特徴的構造と考えられています。今日では、グラフェンでは、2次元周期系ではあるものの、このような3次元方向の変形からくる余分な自由度がある種の熱浴として働き、2次元格子全体がめちゃくちゃになるのを防いでいると考えられています。さらにこのリップルはグラフェンの電子状態に関しては、ランダムゲージ場として働くとかんがえられており、グラフェンの物理をより一層興味深いものとしています。

 事実は小説より奇なり(Fact is stranger than fiction)ではありませんが、現実は常識を時々そして大事なところで覆してくれます。物理屋たる者、定説をそのまま信じてはダメですね、ロシア人は確かにガンコでシツコイ!(Road to Stockholm がホントかどうかは別にして)

トラックバック

トラックバックpingアドレス http://rhodia.ph.tsukuba.ac.jp/~hatsugai/modules/d3blog/tb.php/20
モバイル機器でご覧の方
現在の時刻
今年もやります。まずは量子力学3(遠隔). 冬は 統計力学2 改め物性理論4 (大学院「ベリー接続の理論とバルクエッジ対応」). 令和二年の新年あけましておめでとうございます。今年もあと148日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2020-07-30 12:47:16 (33 ヒット)

Our article on non-hermitian band touching for strongly correlated systems has been published in PTEP (Progress of Theoretical and Experimental Physics), "Exceptional band touching for strongly correlated systems in equilibrium", by Tsuneya Yoshida, Robert Peters, Norio Kawakami, Yasuhiro Hatsugai. Focusing on the non-hermitian topological phenomena for the equilibrium Green function of correlated electrons, a compact review of the exceptonal band touching that is intrinsic for non-hermitian matrices is described as well. Have a look at.


投稿者 : hatsugai 投稿日時: 2020-07-09 12:45:13 (105 ヒット)

Mass points on a periodic lattice connected by springs (spring-mass model) is a simple mechanical system described by an energy-momentum dispersion, that is a macroscopic phonon. We hereby discuss it on the Lieb lattice with chiral symmetry. It possesses extra degeneracy at some momentum compared with well investigated electronic systems (due to extra degree of freedoms). Have a look at "Topological Modes Protected by Chiral and Two-Fold Rotational Symmetry in a Spring-Mass Model with a Lieb Lattice Structure", J. Phys. Soc. Jpn. 89, 083702 (2020) by Hiromasa Wakao, Tsuneya Yoshida , Tomonari Mizoguchi , and Yasuhiro Hatsugai. Also arXiv:2005.00752.


投稿者 : hatsugai 投稿日時: 2020-06-18 07:34:20 (177 ヒット)

Linear electric circuits are one more non-quantum platform of the topological phenomena such as bulk-edge correspondence we have been working around. Then its non-hermitian extension with/without symmetry is surely of the important targets. We have here discussed mirror skin effects of the non-hermitian electric circuit where the boundary states dominate on the mirror symmetric lines. Also possible realization is proposed. Have a look at "Mirror skin effect and its electric circuit simulation" by Tsuneya Yoshida, Tomonari Mizoguchi, and Yasuhiro Hatsugai, Phys. Rev. Research 2, 022062(R) (2020) (Open access).


投稿者 : hatsugai 投稿日時: 2020-06-09 12:11:19 (184 ヒット)

We have been proposing a systematic construction scheme of flat bands by molecular orbitals (MO). Now it is extended for systems with non trivial topology where non trivial bands with non zero Chern numer may cross the flat bands although the Chern number of the flat band itself is vanishing. We have presented a various other examples such as the Haldane model and the Kane-Mele model of the MOs'. Have a look at Systematic construction of topological flat-band models by molecular-orbital representation" by Tomonari Mizoguchi and Yasuhiro Hatsugai, Phys. Rev. B 101, 235125 (2020) also arXiv:2001.10255.


投稿者 : hatsugai 投稿日時: 2020-03-15 00:55:42 (391 ヒット)

Topological phases are everywhere. Higher order topological phases are realized in a spring mass model on a Kagome lattice. Berry phases quantized in a unit of 2π/3 predict localized vibration modes near the corner of the system. This quantization is due to a symmetry protection. Have a look at our paper in Physical Review B. Most of the topological phenomena are realized in a mechanical analogue, which are much accessible without any real high-tech. Of course, it is still a non-trivial task.


    検索
    バルク・エッジ対応
    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    トポロジカル相
    [0]昔の科研費
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    私の講演ファイルのいくつか
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    最新のエントリ
    Web記事 アーカイブ