新HP(試行/作成中)
Select Language
アクセス数 Since 2009
今日 : |
2512 |
昨日 : |
4598 |
今月 : |
7110 |
総計 : |
4066368 |
平均 : |
848 |
Who am I ?
初貝 安弘 筑波大学筑波大学大学院 数理物質科学研究科 物理学専攻 教授 初貝写真
会議 & 研究会
グーグル検索:初貝
ResercherID: Y.Hatsugai
Project
メインメニュー
|
近年の物性科学の進歩により、必ずしも対称性の破れを伴わないが極めて特徴的な物質相が存在することが明らかとなりました。歴史的にみて、その典 型例が量子ホール効果における種々の物質相です。2次元的に閉じこめられたお互いに斥力相互作用しあう電子群が磁場下に置かれたとき電子密度および磁場の 強度をいろいろと変化させると驚くほど多様な物質相が現れることが知られるに至りました。ところがその多くの物質相の間で古来用いられてきた局所的な秩序 変数により記述されるような対称性の違い、区別はその多くの場合全くなく、対称性的には同一の物質相として考えざるをえないのですが、明らかに一連の物質 相の性質は特徴的に異なり同一とはどうしてもいいがたいのです。そこで考えられたのがトポロジカル秩序といわれる新しい概念です。
トポロジカル 秩序とは局所秩序変数が局所場の場の理論にその起源をもつのに対応してWittenによるトポロジカルな場の理論において使われたいくつかの概念との類似 性を元にMITのX.-G.Wenにより初期の提案がなされたものです。たとえば、状態の縮退度が物理系の大域的な構造どのように依存するか等を相の特定 に使おうというわけです。近年私はよい広く、量子系固有の幾何学的位相を用いてトポロジカル秩序の概念を拡張し有効に利用する具体的手法を提案しいくつか の具体的試みを行っています。
振り返ってこの20年来の物性物理を考えるといくつもの新規な物質相が発見されてきましたが、真に興味深いのは、いわば未だによくわからない量子液体相であると考えられます。これら量子液体相においてこそ、幾何学的位相をもちいて拡張された新しい秩序概念としてのトポ ロジカル秩序が極めて有用なものとなると考えられるのです。これについては節を変えてまたご説明したいと思います。
トラックバック
トラックバックpingアドレス
http://rhodia.ph.tsukuba.ac.jp/~hatsugai/modules/d3blog/tb.php/11
|
モバイル機器でご覧の方
現在の時刻
今年もやります。まずは 量子力学3(遠隔).
冬は
統計力学2 改め物性理論II (大学院「ベリー接続の理論とバルクエッジ対応」).
令和二年の新年あけましておめでとうございます。今年もあと-821日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2020-11-03 10:00:50 ( 3166 ヒット) Thouless' (adiabatic) pump in one-dimension is a typical topological phenomena characterized by the Chern number that correspondes to the quantized motion of the center of mass (COM). Although the COM is only well-defined with boudary (to set the origin of the coordinate), the COM experimentally observed is given by the bulk and the edge states do not contribute. Ultimate adiabaticity, that has never been achieved experimentaly, supports the quantization of the COM supplemented by the periodicity of the system with boundaries. This is the unique bulk-edge correspondence of the pump. We here propose a generic construction using a phase boundary line of the symmetry protect phase with two parameters works as a topological obstruction of the pump in extended parameter space. The construction is purely of manybody and the interaction can be one of the parameters. Have a look at "Interaction-induced topological charge pump" by Yoshihito Kuno and Yasuhiro Hatsugai, Phys. Rev. Research 2, 042024(R), (2020) (Open access) 投稿者 : hatsugai 投稿日時: 2020-10-01 16:07:56 ( 3399 ヒット) Motivated by a historical example, the Dirac Hamiltonian as a square-root of the Klein-Gordon Hamiltonian, its lattice analogue has been discussed recently. Zero energy states are shared by the parent and its descendant. The story is more than that. Not necessarily zero energy but its high energy part can also share topological characters. We hereby propose a “square-root higher order topological insulator (square-root HOTI)” when its squared parent is HOTI. Based on the simple observation that square of the decorated honeycomb lattice is given by a decoupled sum of the Kagome and honeycomb lattices, we have demonstrate that the “corner states” of the breezing Kagome lattice with boundaries share topological characters with its descendant as the decorated honeycomb lattice. Have a look at our recent paper just published online, "Square-root higher-order topological insulator on a decorated honeycomb lattice" by Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai, Phys. Rev. A 102, 033527 (2020), also arXiv:2004.03235. 投稿者 : hatsugai 投稿日時: 2020-08-16 14:53:28 ( 3638 ヒット) Adiabatic deformation of gapped systems is a conceptual basis of topological phases. It implies that topological invariants of the bulk described by the Berry connection work as topological order parameters of the phase. This is independent of the well-established symmetry breaking scenario of the phase characterization. Adiabatic heuristic argument for the fractional quantum Hall states is one of the oldest such trials that states the "FRACTIONAL" state is deformed to the “INTEGER”. Although it is intuitive and physically quite natural, there exist several difficulties. How the states with different degeneracy are deformed each other adiabatically? We have clarified the questions and demonstrated this adiabatic deformation on a torus in the paper "Adiabatic heuristic principle on a torus and generalized Streda formula" by Koji Kudo and Yasuhiro Hatsugai , Phys. Rev. B 102, 125108 (2020) (also arXiv:2004.00859) What is deformed continuously is a gap not the states ! This is also sufficient for the topological stability of the Chern number (of the degenerate multiplet) as a topological order parameter. Have a look at. 検索
バルク・エッジ対応
- [0] バルクとエッジ
- [1] 集中講義
- [2] 原論文と解説
- [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
- [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
トポロジカル相
[0]昔の科研費 - 科研費 1992年度:電子系スピン系におけるトポロジカル効果
- 科研費 1994年度:物性論におけるトポロジーと幾何学的位相
私の講演ファイルのいくつか- [1] MIT, Boston (2003)
- [2] APS/JPS March Meeting (2004)
- [3] JPS Fall meeting, JAPAN (2004)
- [4] APS/JPS March meeting (2005)
- [5] JPS Fall meeting (2005):Entanglement
- [6] Superclean workshop, Nasu (2006)
- [7] MPIPKS, Dresden (2006)
- [8] KEK, Tsukuba (2007)
- [9] ETH, Zurich (2008)
- [10] ICREA, Sant Benet (2009)
- [11] JPS Meeting, Kumamoto (2009)
- [12]HMF19, Fukuoka (2010)
- [13] NTU, Singapore (2011)
- [14] ICTP, Trieste (2011)
- [15] Villa conf., Orland (2012)
Web記事 カテゴリ一覧
最新のエントリ
- 原点(2019-3-13 6:36)
- 久しぶりにグラフェンとは?(2013-9-16 23:19)
- 2012年度大学大学説明会:教員からのメッセージ(2012-6-14 16:29)
- 平成23年度 筑波大学理工学群物理学類学位授与式 物理学類長祝辞(2012-4-5 10:29)
- 物理学はじめの一歩 (2011-4-25 11:46)
- 2次元と3次元でぐるぐる(2010-8-20 0:40)
- クラマース縮退と四元数的ベリー接続(2010-7-6 10:19)
Web 記事のトップへ Web記事 アーカイブ
|