Select Language
アクセス数 Since 2009
今日 : 124
昨日 : 237
今月 : 5924
総計 : 1510364
平均 : 522
Who am I ?
初貝 安弘
筑波大学
理工学群副学群長
数理物質系物理学域
筑波大学大学院
数理物質科学研究科
物理学専攻 教授
学際物質科学研究センター(TIMS)教授
初貝写真
YasuhiroV.jpg
会議 & 研究会
グーグル検索:初貝
TAG index
ResercherID: Y. Hatsugai
Project
メインメニュー
リンク

Web 記事 - 量子液体の幾何学的位相による特徴付け

量子液体の幾何学的位相による特徴付け

カテゴリ : 
研究解説:  » 量子液体
執筆 : 
hatsugai 2009-11-25 18:17

量子液体はその名前にもあるように本質的に量子効果をその基盤とするものです。そう考えると幾何学的位相が量子系の本質的側面を記述していると見なしたと き、幾何学的位相により量子液体相を記述、特徴付けようとするのは極めて自然であるとすらいえます。量子的状態とは近年量子計算等の研究の進展で広く知ら れるに至りましたがその局所摂動に対する応答ですら局所的ではなく系全体に及びます。よって量子的波動関数を作業対象とする幾何学的位相を用いた相分類、 特徴付けを考えることは局所場の理論に基づく局所秩序変数に基づくこれまでの相分類、相転移理論とは本質的に異なるものとなります。
すこし細か くなりますが、幾何学的位相を用いた量子液体の特徴付けに関する私の研究をすこし紹介しましょう。量子液体では通常の秩序変数が使えないわけと何度もいい ましたが、では何を作業変数として物理をやればよいのでしょうか? 私は、この問いに対する答えとしてその作業変数として幾何学的位相を用いた「トポロジ カルな量」を用いることを提案し具体的なスキームを具体例とともに提示しています。ここで物理量といわず「量」といったのは通常の古典的対応物の存在する 物理量はエルミート演算子に対応するわけですが、ここでの「トポロジカルな量」は演算子としての対応物を持たないからです。この理論では、エルミート演算 子ではなく、ベリー位相の議論の際に用いられたベクトルポテンシャルを一般化したベリー接続と呼ばれるものを基本的作業変数として議論を進めます。その 際、系の特徴付けを行うためには密度、磁化、等の様な連続量を使うこともできますが、ここでの理論では「量子化」された「トポロジカルな量」を構成するこ とを目指します。量子化された量をもちいれば相の分類が明確であることは明らかでしょう。これを用いると古典的秩序変数とは異なるトポロジカルな秩序変数 を構成することもできるのです。量子液体相では本質的な局所的な秩序変数は存在しないと繰り返してきましたがこの古典的対応物を持たない量を用いることで 量子液体相に対するトポロジカルな局所的秩序変数を構成することができるのです。最近その一般論をつくるとともに重要ないくつかの例であるフラストレート したスピン系、2量体(ダイマー)化した電子系に関して具体的な適用結果を示しました。

トラックバック

トラックバックpingアドレス http://rhodia.ph.tsukuba.ac.jp/~hatsugai/modules/d3blog/tb.php/10
モバイル機器でご覧の方
現在の時刻
今年もやります。まずは量子力学3. 冬は 統計力学2. 平成29年の新年あけましておめでとうございます。今年もあと42日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2017-10-06 16:36:02 (78 ヒット)

The entanglement Chern numbers is a Chern number of an entanglement Hamiltonian which characterizes topological properties of a topological phase. Starting from a pure state density matrix of the ground state, one may obtain finite temperature (mixed state) density matrix by tracing out parts of the system. If the entanglement hamiltonian has a finite energy gap, the Chern number is well defined by lowering the temperature. We apply the concept for the 3D topological phases.The parity of the number of the Weyl point gives a well defined topological number to distinguish the the state is topologically non trivial. Have a look at arXiv 1708.03722 . The paper has been accepted for publication in Physical Review B.


投稿者 : hatsugai 投稿日時: 2017-08-17 17:01:30 (300 ヒット)

初貝研究室では今回助教2名を公募いたします(公募締め切り2017年9月15日)。委細は [助教公募] をご確認ください。適任者のご推薦、ご応募の方よろしくお願いいたします。


投稿者 : hatsugai 投稿日時: 2017-08-17 17:00:09 (342 ヒット)

We are organizing a Japan-Swiss workshop TTCM2017 at EPOCHAL Tsukuba, Sep.10-13 (2017). Limited number of posters will be still accepted.


投稿者 : hatsugai 投稿日時: 2017-08-03 13:38:17 (265 ヒット)

A numerical scheme to calculate the many body Chern number for a ground state multiplet is formulated and explicitly given for projected bands of any lattice. We demonstrate its validity for lattice analogue of the nu=1/3 and 1/2 states. The string gauge to realize the minimum flux compatible with the periodicity of the unit cell is also presented. [arXiv:1707.06722]. The paper is published in JPSJ lett.



    検索
    バルク・エッジ対応
    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    トポロジカル相
    [0]昔の科研費
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    私の講演ファイルのいくつか
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    最新のエントリ
    Web記事 アーカイブ