Select Language
アクセス数 Since 2009
今日 : 38
昨日 : 350
今月 : 8845
総計 : 1462656
平均 : 533
Who am I ?
初貝 安弘
筑波大学
理工学群副学群長
数理物質系物理学域
筑波大学大学院
数理物質科学研究科
物理学専攻 教授
学際物質科学研究センター(TIMS)教授
初貝写真
Yasuhiro2-Nov11-09
会議 & 研究会
グーグル検索:初貝
TAG index
ResercherID: Y. Hatsugai
メインメニュー
リンク

Web 記事 - 最新エントリー

久しぶりにグラフェンとは?

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2013-9-16 23:19
グラフェンとは炭素原子が蜂の巣格子状に結晶化した2次元つまり絨毯状の 物質である。単体の炭素にはグラファイト、ダイヤモンド、C60等 幾つもの同素体 が存在するが、 グラフェンもその1つである。 蜂の巣格子は 周期格子であるが、ある単位胞を2次元の並進操作で並べて蜂の巣格子を つくるとき、単位胞には必ず2種類の原子が含まれる。よって固体物理学の一般論に 従えば、そのエネルギーバンドは2つからなり、中性のグラフェンは 半導体(絶縁体)となるはずであるが、 実際のグラフェンは、種々の意味で対称性が 高く、そのバンドギャップは消失し、ゼロギャップ半導体となる。 よって通常の半導体において使われる有効質量近似は破綻し その有効理論は P. Dirac が特殊相対論と整合的な量子力学のために導入したDirac 方程式の2次元版 となり、 特異な物理現象が期待されていた。 その一方で、ランダウ以来の結晶の安定性の理論によると1,2次元のマクロな完全結晶は 熱力学的に不安定であり、存在し得ないと考えられていた。 それにも、関わらず英国マンチェスター大学の A.Geim と K. Novoselov は剥離法という 驚くべき手法で実際にマクロで単層のグラフェンを合成することに成功し、 その功績により2010年のノーベル物理学賞を受賞した。百聞は一見にしかずである。 ゼロギャップ半導体である グラフェンのフェルミエネルギー近くでの エネルギー分散は$E=\pm cp$ と相対論的な形となるが「光速$c$」は光の速度$c_{light}$ではなく$c\sim c_{light}/300$と実際の光速より大幅に小さい(遅い光!)。 よって、グラフェン中の電子が動き回る世界は、 まさに G. Gamow の不思議の国のトンプキンスが住む 「遅い光」の世界である。グラフェンで観測された原子崩壊はその一つの例である。
2012年度 大学説明会
「教員からのメッセージ」
初貝 安弘
1. 現在どんな研究をしているか

物質の性質とそこで起きる現象を物理的に理解する学問を物性物理学といいます。皆さんの使っている携帯電話、パソコン等の情報機器の物質的基礎は半導体にありますが、半導体の研究も物性物理学の一部です。電気抵抗がゼロになる超伝導や、磁石の起源である磁性も、CD,DVDの読み書きに使われている物質と光(レーザー光)との相互作用も物性物理学の対象の一つです。私も高校生の時には、物理学にそんな分野があるとは認識していませんでしたが、世界中の物理学者の少なくとも半数以上は物性物理学に関連する研究をしていると思います。私はその中でも量子論が重要な役割を果たす「量子的な物質相の理論的研究」をやっています。例えば、磁場中で電子が感じるローレンツ力に起因する量子効果は量子ホール効果を引き起こしますが、この量子ホール効果の理論や2010年度のノーベル物理学賞はグラフェンという単層の炭素2次元系(単原子の絨毯)の発見に与えられましたが、このグラフェンの上に住んでいる電子の振る舞いの理論的な研究などをやっています。

2. 大学時代の思い出

自分の将来像に関して大学に入学したときに考えていたことと卒業するときに考えていたことは随分と違いました。大学4年間は人生の中でも柔軟性に富んだとても大事な時代です。また、大学そしてその先には高校生の皆さんの想像を越えた多様で面白い学問分野が広がっています。大学入学はあくまで入り口です。大学に入学したら意識的に興味を広く持って、いろいろな学問分野に顔を突っ込んで見てください。

3.大学を目指す高校生へのメッセージ

 入学試験に合格しなければ大学に入れませんが、入学して大学の研究活動にはいると少し様子が変わります。試験の多くは個人を(無理に)順序付けするものですが、研究活動は優秀さの競争でなく、新しいものを見つける活動です。上にも述べましたが多様な分野の中で自分にあった、つまり、自分が得意な分野で他の人にできない何かを見いだし新しいものを生み出してください。広い意味ではそれが人類の文化に貢献するということです。
平成24 年3 月23 日
筑波大学理工学群 物理学類 学位授与式 [photo]
物理学類長 初貝安弘
祝辞
皆さん、本日はご卒業おめでとうございます。入学以来本日の卒業にいたるまでの努力が報いられたわけです、まずは心からお祝い申し上げます。入学以来、皆さんは物理学はじめ多くの学問を学んできてわけですが、現代の大学教育、特に物理学教育のレベルはほぼ20世紀の現代物理学の基礎をほ ぼ全てを四年間でほぼ教育するのですので、決して簡単なものではありません。皆さんが名前をよく知っている19 世紀以前の多くの物理学者、例えばニュートンやガリレオは知ることができなかった物理学の原理、法則などを皆さんはしっかりと理解しているはずです。その意味では皆さんはニュートンやガリレオより何歩も進んだ学問を身につけているわけです。すばらしいではないですか。皆さんは、この物理学の課程を修了したわけですので、自信をもって今後の社会生活を送っていただけるものと思います。より広い意味では、大学教育を修了した皆さんは、文系、理系を問わず学問がなんたるものかを理解できる教養人であるはずで、社会からそれ相応の敬意をもって受け止められる人材だと思います。逆に言えば、皆さんにはその社会の期待に応える責任があります。大学の卒業生は大学教育の成果そのものです。わかりやすく言えば、大学の価値とはその卒業生が作っていくものです。皆さんが頑張ればこの大学の名もあがるわけです、皆さんの今後の活躍がこの筑波大学の価値になっていくのです。この自負とそして責任をもって社会に貢献できる人間になってください。今日受け取る卒業証書は皆さんが本学の既定の課程を修了したこと、卒業生であることを社会で行使する権利を意味するのですが、逆にそれにふさわしい人材でなければならないわけで、そこには大きな責任も発生しています。昨年の大震災、そして原発事故等により社会において自然科学の意義とその重要性が再認識されたことは明らかです。より広くは現代社会の大きな課題である環境問題の解決には物理学的知識が必須であることもあきらかでしょう。大学教育を受け、そして修了した皆さんは教養人であるはずです。教養人とは自分で考え、自分で知識を得ることができる人を意味します。例えば、事故による放射線の問題も正しく科学的に認識することは物理学を学んだ皆さんの責任の一つです。不要に感情的になることなく、事実とそのリスクを自分の知識で正しく理解し判断することが必要でしょう。社会に出る皆さんは勿論のこと大学院に進学する皆さんも十分立派な社会人のはずです。新素材や新しいシステムの開発、新現象の発見、新概念の開拓、等々、皆さんの学んだ学部の物理学の知識をもとに社会を、そして物理学を、よりすばらしいものへと変えていってください。4 月からは社会にでて就職する方、本学をはじめ大学院に進学する方、いろいろだとは思いますが、何をやるにせよ、すぐに種々の問題にぶつかることと思います。その時、逃げることなく、問題を自分の知識の下で考え、不足する知識を自発的に取り入れ、みずから判断し、新しい世界を切り開いていって下さい。まずは、今日を一つの区切りとして、新しい世界でより一層活躍していただけることを心から祈っております。 以上をもって私の祝辞といたします。(概略)
大学初年次の学生の皆さんを対象に力学の初歩の初歩を学びつつ、物理学において必要とされる算術のイロハを講義することとなりました。ご参考までに内容をご紹介します。[Web] 2011, [Web] 2012

参考になる書籍を紹介します。

一般力学: 山内恭彦(岩波書店)
見たことない物理屋はもぐり[amazon]
解析概論: 高木貞治 (岩波書店)
理科系の大学卒なら必ずもっているハズ[amazon]
物理学のための応用解析: 初貝安弘 (サイエンス社)
上述2冊と併記させていただくのは僭越ですが、本人が以前類似の講義したときの内容なので、[サイエンス社][amazon]
「原点」
筑波大学新聞 2011年4月 : 物理学専攻 初貝安弘
既に三十年前になるが、十八で大学に入学したときが、いろいろな意味で自己を確立するための原点であったといえよう。毎春入学する学生の皆さん同様、若者なりの志と目標を持っていたように思うが、思い返すにすべてに迷っていた。希望もあったと思うが、なにも定まっていなかった。親元を離れ都会で一人で生活することの自由と不自由のなか、新しい個性的な友人に出会い、優秀な友人に驚きもし、世の中の広さを感じていたように思う。その上5月病とはいわないが、それなりに大学入学後に気が抜けたところもあり、満喫とまでは言わなくとも多少の自由を味わい、結果として勤勉な学生ではまったくなかった。まあ、田舎から出てきて、良くも悪くも、いろいろと度肝をぬかれたというところであろうか。 この二十歳になる前の数年間は、旧教養課程制度による極度に強制が少ない自由な時代であり、思い返すと一見無駄としか思えないこと、冷や汗もののことも多々あったが、逆にまたとない貴重な時期であったようにも思う。この時代を少し反省してみると、語学、特にいわゆる第二外国語だけは、もっと真面目にマスターしておけば良かったと思う。本は年をとっても読めるが、語学の修得に必要な反復練習は若いこの時期を逃すとなかなか難しい。また、現在の専門につながる数物系の講義に関しても決して真面目に出席していたとはいえないが、時々出てみて、こういう世界もあるのかと心密かに驚くこともあった。ただ、必要なこと、知らなければならないらしいことに関して、本を探し出してきて調べるなり、考えるなりして、自分でどうにかする癖がついたのは、かえって良かったのかもしれない。(勿論、すべてが、どうにかできたわけではない。)時がたって立場も講義する側となったが、時代の要求で今や講義も懇切丁寧にそして下手をすると学生諸君の理解度にあわせてやることが求められ、是か非かは別にして、これまた迷いながら教員もそれに応えようとする風潮があることは一考に値しよう。 話をもどすと、私はこの迷える時代を過ごした後、ありがたいことに、大学に職を得、現在の専門である物性物理学の理論を研究するに至った。この機会に研究に関する原点を探して記憶をたどれば、修士課程の(たぶん殊勝な)学生だった頃、研究室の飲み会の為いそいそと買い出しに出かけたこと、教授陣の忘年会の挨拶を心から恐縮して聞いていたこと、そして、大学近辺の銭湯通いをするなど随分苦労して手書きで修士論文をどうにかまとめさせていただいたことなどが思い起こされる。その後、高温超伝導体の発見後に生じた物理学諸分野の(残念ながら一時的であった)大交流時代に諸先生、諸先輩の研究活動に仲間入りさせていただき、その後、博士課程を中退して助手に採用していただいた。忘れかけたこの純情な時代に感じた喜びと責任、そしてほんの少しの自信が現在の研究教育活動の原点といえるのかもしれない。
略歴
東京大学工学部物理工学科卒業
1989年3月東京大学物性研究所助手、以後、東京大学工学部物理工学科講師、助教授を経て2007年4月より筑波大学大学院数理物質科学研究科物理学専攻教授。工学博士(東京大学) 1992年10月-1993年9月 : マサチューセッツ工科大博士研究員 (兼任)

2次元と3次元でぐるぐる

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2010-8-20 0:40
3次元空間にある物体の回転は(x,y,z)軸の組(フレーム)の向きを固定した取り直しで指定されます。この操作はSO(3)と呼ばれるあつまり(群)をつくります。するとぐるぐる回すという回転操作の過程はSO(3)の中の曲線を意味することとなります(世界線)。

よって、ぐるぐる回してもとに戻る過程はSO(3)の閉曲線をつくることとなります。一気に3次元だとちょっと難しいので2次元での回転つまりSO(2)から考えてみましょう。つまり地面の上に張り付いたアリやぎっくり腰で高さ方向の自由を失った人をかんがえるわけです。このときは、右回りに1回る操作と2回る操作、3回,4回、、、左回りに1回、2回、、、という操作はすべて別な操作で、連続に変形できないことはよく理解していただけると思います。このぐるぐる回す過程は3次元では2種類しか本質的にないというと皆さんおどろかれますか?さしあたっては、以下の絵でたのしんでみてください。

くわしくはまた。

 

From "Spinor and space-time" R. Penrose & Q.Rindler

時間反転な系特有のクラマース縮退は4元数(Quaternion)により自然に記述されます。[Y. Hatsugai in Focus issue in topological insulators :NJP] [論文直接]

一般に波動関数の位相の不定性はベリー接続に U(1) のゲージ構造をあたえますが、クラマース縮退のある場合、それはSp(1)ゲージ構造となります。また、ベリー接続の特異点を与える偶然縮退は一般にはDirac単磁極を与えますが、時間反転不変な場合、この特異点はYang のSU(2)単磁極となります。この例のように Sp(1)=SU(2)の同値性に基づくと時間反転不変な系でのベリー接続はSU(2)ゲージ理論の一つの実現をあたえることとなります。
ここで通常の複素数を四元数(Quertenion)に読み替えることにより、時間反転を持たない場合と持つ場合がアナロジーを越えてマップとして自然に読み替えられることとなります。ベリー接続のゲージ固定条件を考えることにより、非自明かつ自然な次元は複素数、四元数の基底の数により規定され、それぞれ2次元、4次元となります。対応して位相不変量はそれぞれ、2次元、4次元球面上の第1,第2チャーン数であたえられ、その量子化は1つ次元が下の赤道上、1次元閉曲線上の回転数、3次元球面上のポントリャーギン数の量子化に帰着しますが、これは特定のゲージ固定のもとでの球面上の特異点とみることもできます。この特異点は、自然な次元から1つ次元をあげた、それぞれ3次元、5次元のなかで一般化したDirac stringとなり、その終点がDiracおよびYang 単磁極となるのです。これら2次元、4次元球面上の赤道はカイラル対称な部分空間として特徴付けられ、この赤道上での奇数次元の積分で定義されるベリー位相並びにチャーンサイモン積分は第一、第2チャーン数を整数のゲージ不定性としてのぞけば半整数値に量子化されることとなります。これがZ2量子化です。くわしくはまた!

皆さんは物理学に対して色々なイメージを持っていると思いますが、この機会に物理学が大事にしてきたものについて、少し説明してみたいと思います。物理学の研究者には多くのタイプがありますから、「これ」と一つだけをとり上げることは簡単ではありませんが,「普遍性」(英語ではUniversalityと呼びます) は物理学の多くの分野にわたって最も重要な概念の一つであることは間違いありません。文字通りの意味では広く遍く(あまねく)存在する概念ということです。自然科学とは自然を科学的手法で理解する営みで、物理学、化学、生物学,材料科学などがその代表的なものです。これらの学問はお互いに必ずしも排他的な関係にあるわけではなく、ある研究は物理学と化学の両面をもつなどということも珍しくありません。物理化学、生物物理学等という表現はそれをわかりやすく示しています。にも関わらず物理学がとりわけ特に大事にしている概念が「普遍性」です。これについて以下詳しく議論しましょう。

「普遍性」(Universality)という言葉は説明しましたが、ある意味で対極的な概念が「多様性」(diversity)です。科学には博物学的側面が必ずありますから、科学的研究活動においては、多くの種々雑多な対象を集め、それぞれの学問の手法で記述することから学問は始まります。対象の多様性を追求し、その中で興味深いもの、役に立つものなどを種々の観点から追い求めるのです。対象の多様性を楽しむわけです。自然科学の中でも、材料科学、薬学等ではこの多様性が本質的に重要でしょう。もちろん、物理学も自然界の中の種々の対象を記述するわけですから多様性ももちろん重要ですが、物理学の特徴は、多種多様な対象の中に多様性を楽しむだけでなく普遍的な性質を見出すことにあります。物理学は普遍性を極限までに追求する学問とも言えるでしょう。

では、具体的には普遍性とは何を指すのでしょうか?皆さんは大学に入るとすぐに物理学Aという科目で「質点の力学」を学びます。高校でも質点の力学は学んでいるでしょうから、馴染み深い科目といえるでしょう。実は、この質点の力学は普遍性が最もわかり易い形で現れた分野ということができます。この質点とはなんでしょうか?点ですから大きさはありません。点であってかつ質量はある「モノ」(object)を質点と呼びます。もちろん、大きさはなく質量だけをもつものなんて現実の世界にはひとつもありません。では質点の力学は現実に存在しないものの力学を扱うナンセンスな学問なのでしょうか?そんなことをいうと「いろいろなものの運動は近似的に質点として扱えるんだよ」という声が聞こえてきそうです。文字通りの意味では、全くそのとおりですが、普遍性を最重要と考える物理学としては、それだけでは本質的に大事な点を全く理解していないことになります。

自然界の力学的な運動を例として考えたとき、そこには多種多様な対象の種々の運動があることに注意しましょう。野球のボールの運動、自転車の運動、そして原子、電子,原子核の運動、また、地球の太陽周りの運動、銀河の運動、宇宙全体の運動もすべて物理学が対象とする力学運動です。これら全く異なる運動が、質点の力学として共通して捉えることにより、普遍的に理解することができるのです。ボールの色、原子の種類、銀河の形、含む星の数等をすべて切り捨て、対象の個性としては唯一の「質量」のみを取り出したとき、これらの異なる対象の力学的運動は「質点とそれに働く力」で記述される共通のニュートンの運動法則に従うと考えることができるのです。全く異なる自然の中に、質点としての「質量」だけを対象の個性として、普遍的な運動の原理を見いだすわけです。これが物理学の大事にする普遍性です。

一見似ていますが,普遍性を大切にする立場からは、質量以外の個性を切り捨てる過程は「近似」ではなく「情報の縮約」と呼びます。これは個々の現象において何が大切なのかを見極める最も大切な過程です。物理学は運動方程式の解き方を学ぶ学問ではなく、自然界の現象を如何に記述するかを大事にする学問なのです。勿論、情報の縮約の過程は決して自明な過程ではありません。現象において何が重要なのかを正確に見極めることが必要な困難な過程です。現在の物理学においては、この「情報の縮約」のための方法論も、必ずしも万能ではありませんが,いくつも開発されています。ここでは「繰り込み」と呼ばれる概念がそのひとつの例であることを注意しておきます。

この情報の縮約の過程で、その物理学的認識に関する適用限界も自ずと明らかとなります。力学の例で言えば運動法則に関して適用限界があるのです。個々の物理学的法則には、それぞれ、時間スケール、エネルギースケール、空間スケール等に関して適用すべき領域があるのです。「何だ、近似か」などと考えてはいけません。適切なスケール、これを階層と呼べば、階層ごとに適切な物理法則を見出し、その階層をつなぐことが物理学の手法であり、物理学的な自然認識なのです。ニュートン力学は光速に近い運動には適用できず、相対論による記述が必要であること、また原子、電子といったミクロな世界の記述では量子論的記述が必要なことを、皆さんもどこかで聞いたことがあると思います。しかし、現在でもニュートン力学の重要性は失われるどころか、ますます多様な現象に適用されていることは皆さんもご存知でしょう。日本の新幹線や地下鉄があれだけ正確で、自立型のロボットや自動化された工場の生産設備はすべてニュートン力学の完全な支配化にあります。たとえ、極微の世界の運動法則としての、究極の理論が完成したとしても階層的認識に基づく、ニュートン力学他、各階層の物理法則の意義は失われることはありません。電車の動きに量子論を適用することは無意味であるだけでなく、量子論は電車や飛行機の運動の記述には全く無力なのです。

スペースもつきましたので続きは物理学の講義でということにしますが、階層的な物理学的認識の意義と物理学における普遍性の重要性に気づいてもらえれば幸いです。物理学はあれこれ計算する学問ではなく、とことんまで考える学問なのです。
 

 

ベリー位相(とゲージ構造)

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2010-1-29 10:37

断熱定理のところで説明したように量子系が時間的に変化しない定常状態にあり、かつ他の状態とエネルギーギャップをもって隔てられているとしましょう。ここでは小鳥が1わ入った鳥かごをイメージしてみます。この系を断熱定理の仮定を満たすようにゆっくり移動させ、最後にもとの位置に戻すことを考えましょう。鳥の入った鳥かごをそ〜っと2階までもっていってまたそーっと1階にある元の場所に戻すわけです。断熱定理によるとこの過程で量子系の状態は変化しないので系の量子状態はもとに戻ることとなります。禅問答のようですが、もとにもどるころはもどるのですが、実はすこし何かが変化する余地があるのです。それがなければわざわざ説明しませんよね、

 

 ここで量子系の状態とは何かを少し考えてみましょう。量子系の状態とはある種のベクトルとみなせますから高校で学んだ空間内の点を指定する位置ベクトルをイメージしてみましょう。ただ量子論ではベクトル自体に意味があるので、その向きは気にしないことにします。線分を空間の中に書いてベクトルとしたとき、線分の両端のどちらに矢印を書くかは気にしないというのです。さらにベクトルの大きさは色々あるの混乱をきたすので常に大きさ1のベクトルだけを考える事とします。これを量子論では状態は規格化されていると言います。さあどうでしょうか?量子論では状態が向きを気にしない長さ1のベクトルで指定されていて、断熱定理によると上記の過程(断熱過程)で状態がもとに戻ったとして、何かさらに変化する余地はあるとおもいますか??

 賢明なかた(注意深い方)でしたらおわかりと思いますが、量子論ではベクトルの向きを気にしないといいましたからその向きが変わってしまう可能性があるのです。上記の3次元空間のベクトルの例では向きは −1(マイナス一)を書けることでいれかわりますが、その符号が断熱過程において変化する可能性があるというのです。一般の量子系では状態はベクトルはベクトルでも複素数を成分とするベクトルをかんがえますので、規格化しても絶対値が1の複素数、つまり位相だけ不定となりますが、ここでの断熱過程においては系がもとにもどってもこの位相は必ずしももとにもどらず、ある有限の位相変化が残ることがあります。この位相変化がベリー位相とよばれるもので、量子系の幾何学的位相と呼ばれるものの代表格とい考えられます。

 ゲージ構造についてはまた後ほど、、

断熱定理

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2010-1-28 21:03

 原子(アトム)とはギリシャ時代に物質をどんどん細かく分けていくとあるところで、これ以上は分けられないもの、分けてしまうと性質が変わってしてしまうものとして、観念的(哲学的)に考えられたものですが,量子力学の量子とはこれと類似のある何か基本的なを意味します。例として信号機の赤色の光を考えてみましょう。信号の出力を絞っていくとどんどん暗くなりますが、光を量子論的に考えるといくらでも暗くできるのではなく、限界があることとなります。赤色の光にはその基本的な単位つまり量子があるのです。この光の量子はプランクにより光量子仮説として、ある実験の解釈のために導入されましたが、現在では確固たる実験事実となっています。赤色の光を検出器で測りながらどんどん暗くするとあるところで、検出器は連続して光を検出しなくなり、ポツポツと不連続に出力を出すようになります。光の量子をフォトンといいますが、この領域の検出器はフォトンカウンターつまり光量子の数を数える計測器となるのです。

 もう少し広く量子とはquantum jupm等と使われることからわかるように不連続性を意味します。光量子は1個、2個,3個と不連続な整数個しかありえないわけで光量子1.2個が観測されることはないのです。表題の断熱定理とはこの不連続性に関係します。物理的な系が時間的に変化しないある量子状態にあるとしましょう(定常状態といいます)。この状態は例えば光量子2個の状態のように他の量子状態(例えば光量子3個の状態)とは不連続にしか変化できないとします。外界からエネルギーをもらわないと他の定常状態に移動(遷移といいます)できないわけですが、不連続性に対応してこの状態の変化に必要なエネルギーは有限の大きさとなります。光量子1個分のエネルギーをもらわないと光量子が2個の状態から3個の状態には変化できないわけです。今、物理系は定常状態、つまり時間的に変化しない状態にあると仮定していますが、この系をゆっくり変化させることを考えてみましょう。できるだけそーーと、無限にゆっくりと変化させることを考えましょう。2個光量子の入った箱をゆっくり動かすようなものです。ここで動かすためには外界からエネルギーを注入しなければ成りませんが他の状態に移り変わるためには「量子」に対応するだけの有限の大きさのエネルギーが必要となることを思い出しましょう。ゆっくり動かすときゆっくりであればあるだけ外界からの外乱によるエネルギーの流入は少ないわけですから、量子に対応するエネルギーに比べてこの外乱のエネルギーを小さくすれば、つまりゆっくり動かせば系はほとんど移動に伴なう外乱の影響を受けないこととなります。つまり、「量子化された定常状態にある系は系を無限にゆっくり動かすとき状態が変化しない」こととなります。これがボルン、フォン・ノイマン等により定式化された断熱定理とよばれる主張です。ここで系が量子化されていることつまり他の状態と有限のエネルギーをもって分離されていることが重要です。物理的な考察では単に「ゆっくりと」というだけでは意味ある主張はできません何に対してゆっくりなのかを示さなければなりませんが、ここでは他の状態とのエネルギー差(ギャップといいます)を基準にして移動にともなう外乱のエネルギーを極めて小さくするというわけです。ギャップがあれば断熱定理が成立するのです。

2次元固体の安定性とリップル

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2009-12-18 8:33

グラフェンとは炭素原子が平面上で蜂の巣の形に規則的に整列したものですから、炭素原子が規則正しくならんだ絨毯のようなものです。もちろんこの 絨毯の大きさは有限ですが、電子間の距離を単位にしてはかれば十分に大きいので、無限に広がった規則的な原子の絨毯です。このグラフェンは別に低温にしな ければできないわけではなく、常温で作成されました。具体的にはscotch tape method (日本語ならセロテープ法) といわれる怪しげな(と当初はおもわれた)方法で実際につくられました(Novoselov, Geim 他)。常温ですから当然熱ゆらぎも無視できないはずですからグラフェンはきわめて安定な物質と考えられます。ところが理論的には古くから完全な2次元 固体は安定に存在できないと信じられていました。規則正しい周期的な構造が存在するためには、どこかで偶発的に生まれた乱れが全体に広がってしまわないことが必要ですが、2次元という低次元性の為、無限と思われるぐらいに大きな2次元結晶では、これらの勝手にうまれたゆらぎはどんどん増殖してめちゃくちゃな状態になってしまうと予想されていたのです。しかし、論より証拠とはこのことで、いくら理屈を言ったところで、現実に作ってみせたのですから、文句の言いようがありません。理屈の方がどこか間違っていたか、議論が不十分だったのです。

 実際の単層のグラフェンは完全に真平らではなく、下の図のようにうねうねしていると考えられています。2次元は2次元でも3次元の中に埋め込まれた2次元系ですので、このようなことが可能なわけです。この「うねうね」構造はリップルと呼ばれ、単層グラフェン、特に基板等何かの上に乗っていないという意味で、free standing なグラフェンの特徴的構造と考えられています。今日では、グラフェンでは、2次元周期系ではあるものの、このような3次元方向の変形からくる余分な自由度がある種の熱浴として働き、2次元格子全体がめちゃくちゃになるのを防いでいると考えられています。さらにこのリップルはグラフェンの電子状態に関しては、ランダムゲージ場として働くとかんがえられており、グラフェンの物理をより一層興味深いものとしています。

 事実は小説より奇なり(Fact is stranger than fiction)ではありませんが、現実は常識を時々そして大事なところで覆してくれます。物理屋たる者、定説をそのまま信じてはダメですね、ロシア人は確かにガンコでシツコイ!(Road to Stockholm がホントかどうかは別にして)

量子論と経路積分

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2009-12-16 6:10

量子論における確率解釈:粒子の運動は各時刻における粒子の場所を指定すれば完全に確定します。例として1次元的な運動をする粒子を考えてみましょう。たとえば、量子細線の中の粒子や塀の上を歩いている猫などを想像してみてください。このときは、横軸に時刻、縦軸に粒子の位置をプロットした紙に書いたグラフ、中学以来学んだグラフですね、これを書けば粒子の運動が決定されたことになります。このグラフのことを世界線とよびます。1次元の粒子の運動を決定する世界線は 1+1=2次元の時空間(紙の表面のことです)の中の曲線ということになります。実際の粒子は3次元空間の中にありますから世界線は3+1=4次元の中の曲線ということになります。この世界線を経路とすこし親しみをふくめて呼びましょう。  勿論古典的には粒子の運動する経路はNewtonの運動方程式に従う特定のものとなります。実際に実験、観測をするとその特定の経路が実現するというのが古典的な物理学の予言です。このような古典力学による記述はきわめて正確であり、日常生活における物ごとの記述においてその成立に関して疑うところは全くありません。(いまでは携帯電話に標準装備となりつつあるGPSの動作には相対論的補正が重要だとはよく知られたところですが、量子論的補正が日常生活で必要だとはいまのところ聞いたことはありません。)  それにも関わらず古典論を包含すると考えられている量子力学による物理学は粒子の運動に対してもすこし異なった予言をします。量子力学によるとすべての可能な世界線をたどる事象は全て原理的には起こることがあり得ることになります。古典的には決して起こらないいわばとんでもない事象も原理的にはおきることを許容するのです。ただ、実際の実測、実験を行ったとき、その全ての経路(事象)はある特定の確率で観測されることを量子論は主張します。常識的には起こらない事象の起こる確率は極めて極めて低いならば、常識と矛盾しないわけです。猫がタイプライターをたたいてシェークスピア全集を全て書き出すこともそれこそ原理的には可能なはずですが、猫にベストセラー作家の座を奪われる心配をする作家がいないのと同様に、通常の設定では古典論の予言が外れることは無いわけです。

確率振幅の重ね合わせの原理:ある特定の事象(経路)が起こる確率は確率振幅とよばれるある複素量の絶対値の2乗で書けると量子論は主張します。さらに、量子論ではこの確率振幅に対して「重ね合わせの原理」が成立することを要求します。量子論における波動性とは基本的にこの重ね合わせの原理にその基礎をもちます。確率振幅が池の波や音波などと同じ波動だというのです。波動現象の最も際だった特徴は干渉が起こることにあります。最近某電機メーカーから消音タイプのヘッドホンが販売されています。騒音のひどいところでもそのヘッドホンを使うと聞きたい音楽だけが聞こえて、周りの騒音は消えてしまうと言う、一見魔法のようなヘッドホンです。(私も持ってました、今は、どこかにいってしまいましたが、、でも確かに効果ありました)。このヘッドホンは、外部の騒音と逆位相の音波を聴きたい音楽に重ね合わせて耳の近くで出力しているのです。(たぶん、)音の強度、つまり聞こえる音の大きさはそれぞれの音の大きさの和になるわけではなく、波動の振幅を重ね合わせてからつまり足しあわせてから(絶対値の)2乗をとったものがその大きさとなります。バネのエネルギーが伸びxの2乗(バネ定数kならkx^2/2)となるのと同じです。日常生活ではうるさいところで大声をさらに出されるともっとうるさくなるので、音の大きさがどんどん加えられるように感じますが、これはそれぞれの騒音が全く勝手な騒音だからです。(騒音ですから当然ですね)これを物理的には「コヒーレントでない」非干渉性の音と呼びます。このような音については振幅の重ね合わせから大きさの加法性が導かれます(簡単な三角関数の計算ですが、ここではこれ以上の説明はやめます)。某電機メーカーのヘッドホンからはこのような勝手な音でなく、可干渉性(過干渉ではなく)のコヒーレントな音が出ているはずです。これをかさねあわせると音の大きさは増えないで減る、つまり消音効果をもつのです。量子論では事象の生起確率が確率波の大きさ(つまり振幅の絶対値の2乗)となることをその基本原理と考えます。日常の生活での物事の生起確率を支配する確率振幅は可干渉性をもたず、コヒーレントでないので、例えば英語の試験で10点をとることと20点をとることは独立となって排反事象に関する確率の加法定理が成立します。つまり10点をとる確率が1割あって20点とる確率が2割あるなら、10点か20点を取る確率は3割になるわけです。騒音が積み重なってますますうるさくなるのと同じです。

すこし具体的に議論を進めると量子論によれば、ある可能な経路に対する確率振幅はexp(i 2pi S[経路]/ h) と書けると考えられています。ここでS[経路] はその仮想的な経路に関する作用積分と呼ばれる量で[エネルギー×時間]=[長さ×角運動量]の次元を持つ物理量です。解析力学を学んだことのある人は聞いたことがあるとおもいます。またここで出てきた h は量子論の基礎付けに多大な貢献をしたプランクにちなんで名付けられたプランク定数で量子論固有の唯一の定数です。この定数は先ほどの作用とおなじ[エネルギー×時間]の次元をもっていてMKS単位系やcgs単位系ではかると0.000とぜろが30個ぐらい続く程度に日常の生活感覚的にはとても小さな定数です。 exp[ i 2pi S] は複素指数関数と呼ばれる複素数の値をとる三角関数のような周期関数で引数のSに関して周期1の振動する関数です。ここで 1/h がMKS単位系で、つまり日常の現象に関してとても大きな数(逆数ですから、、)であることを考えると日常生活での経路がすこし変化したことによる作用積分の変化はMKS単位で大体1程度と考えられますから、1/h をかけ算した値はとても大きなものとなります。つまり日常生活を表す経路(世界線)のちょっとした変化、(例えば髪の毛がちょっと揺れたぐらい?)による確率振幅の変化はとてもとても激しいものとなります。実際に実験で観測される事象に関する確率振幅は似たような事象に関する確率振幅を重ね合わせたもので与えられますので、経路が少し変わったときの効果を取り込むとほとんど打ち消しあってしまうと考えられます。よって古典極限つまり h がとても小さいと見なせるような現象では経路がすこし変化しても作用は変化しないような経路だけが主たる寄与します。これは解析力学で学んだ最小作用の原理に他なりません。量子論をここで議論したような確率振幅の重ね合わせの原理に基づいて理解しすると、その古典極限からニュートンの運動方程式がリンゴの木から落ちるリンゴを観察しなくとも、論理的に導出できることになるのです。

重ね合わせの原理から経路積分へ:確率振幅がある種の波動で重ね合わせの原理がなりたつものであるとすると。特定の事象が起こる確率をあたえる確率振幅は可能な経路に対する確率振幅をすべて重ね合わせたものとなります。防波堤の中の波の高さを理解するには防波堤やそれ以外のいろいろなところから跳ね返ってきた波をすべて重ね合わせることが必要なことや、先ほどの消音ヘッドホンをかけたときに聞こえる消音化された音は、外部からの音とヘッドホンからの音を重ね合わせなければならないことと同じです。先ほど古典極限を説明するときには黙って使ってしまったぐらいにこれは波動の基本的性質です。経路積分とはこの確率振幅に関する重ね合わせの原理をすこし上等かつ形式的な表現として書き下したたものにすぎません。繰り返しますと、特定の事象が起こる確率振幅は「可能な全ての経路に関する確率振幅をすべて重ね合わせることで与えられる」のです。経路についての重ね合わせは足し算、それを区分積分法として連続に足し算するため「経路積分」とよぶのです。形式的には名前のとおり粒子の通過しうるすべての道(経路、Path )について総和をとる(積分する)ことにより得られた量(数)、ならびにその計算法を指します。

この経路積分は、最近は、多くの啓蒙書でも有名な R. Feynman によって発明された概念で、以上の議論も基本的にFeynmanによるものです[Link]。ここでご説明したように量子力学はこの概念にもとづいて構成すると非常に理解しやすいものとなります。またこのような経路に関して和をとる、つまり積分するという視点は現代の物理学ではとても重要な意味を持ちます。例えば、量子統計力学や多電子系の量子論、ベリー位相等幾何学的位相の議論では不可欠の理論的概念となります。これらに関してはまた節を変えてご説明したいと考えています。

Feynmanは冗談だけいってるわけでなく、ホントにえらい!!

 

バルク・エッジ対応

カテゴリ : 
研究解説:  » 量子液体
執筆 : 
hatsugai 2009-12-15 7:00

量子ホール効果は2次元電子系にて実験的に測定されるホール伝導度が極めて高い精度で量子化される現象であり、その発見(Klaus von Klitzing, 1985) に対してノーベル物理学賞が与えられました。現在では、この系の量子基底状態はいわゆるトポロジカル絶縁体の典型例かつ最初の例であると考えられています。

トポロジカルとは、遠い近いという概念を無視して、つながっているものはつながってるままにするような変形をすべて許したとき、それでも生き残る概念をさします。例えば、取っ手のついたコーヒーカップと浮き輪は粘土から穴が1つあるという性質はそれらが粘土から出来ていると見なせば、連続変形できることが想像していただけるのではないでしょうか?量子ホール効果はこのようなトポロジカルな量に支配されている現象であり、それ故、異常なまでの高精度でその量子化が実現するのだと考えられているのです。その後、今日までの多くの研究によって、今日では、このようなトポロジカルな起源をもつ物質相は他にも多種あり、量子的な物質相としては、ある意味で典型的でさえある重要な相であることが認識されるようになり、量子ホール相と同様のトポロジカルな起源を持つ絶縁体はトポロジカル秩序の名の下に多様な物質相を包括する一群の物質相であることがわかってきました。近年話題の量子スピンホール相もその一つと考えられます。これらのトポロジカル秩序相はバルクには一切特徴をもたず、如何なる対称性の破れを伴わなず特徴の無い、いわば「のっぺらぼう」の相であり、唯一バルクのホール伝導度が特徴的物理量であり、これはチャーン数とよばれる一般のベリー接続から定義されるトポロジカル不変量にて記述されることとなります。一方で物理系が境界があるとき、その系の境界には典型的な局在状態が系の細部の委細にかかわらず、特定の形であらわれます。この局在状態はエッジ状態とよばれますが、これがまたある種のトポロジカル不変量を定義し、これが境界のある系のホール伝導度をあたえるのです。この論文ではその2つの位相不変量のあいだの関係を厳密に与えました。もちろん熱力学的物理量を考える際、系に境界があるかないか等は無限体積極限で無視できることとなりますが、トポロジカル絶縁体においては、系が境界を持つときにあらわれる局在状態としてのエッジ状態こそが系の特徴と考えられるのです。これらのバルクとエッジの相互関係を「バルク・エッジ対応」とよびます。このバルクエッジ対応の立場からは、非自明なバルクの存在は非自明なエッジ状態の存在を示唆し、逆にまた特徴的局在状態としてのエッジ状態はバルクが非自明なトポロジカルな相であることを意味するのです。私が論文でトポロジカル絶縁体の典型例である量子ホール系に関して、私が「バルクエッジ対応」を初めて発見し、厳密にその成立を示したあと[1][2]、多くの研究で他の系での成立が確認され、現在では、この「バルクエッジ対応」の概念はより広くトポロジカル絶縁体において成立するきわめて普遍的なものであると今日では広く信じられつつあります。最近ではこれを Hatsugai-conditionと呼んでくれる人もいます。

[1]"Chern Number and Edge States in the Integer Quantum Hall effect", Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993) [Phys. Rev. Lett.]

[2]"Edge states in the Integer quantum Hall effect and the Riemann surgace of the Bloch function", Y. Hatsugai, Phys. Rev. B48 11851 (1993) [Phys. Rev. B]

トポロジカル項

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2009-12-13 18:10

解析力学によると古典的なニュートン方程式を導くラグランジュ関数は唯一ではなく、不定性があり、特に時間の全微分 dW/dt を加えても運動方程式は不変であることが知られています。量子力学をいわゆる経路積分により定式化する際、この時間の全微分の項は、やはり量子論の運動方程式であるシュレディンガー方程式には影響を与えませんが、波動関数の位相に付加的な位相として e^{iW(t)} として現れます。一般にはこの位相は物理系の履歴(経路)に依存することが特徴です。物理系の存在する空間が単連結である場合、この位相は物理的な影響を与えませんが、空間の構造がすこし複雑になるとこの項が量子干渉効果として、系の観測量に影響をあたえることとなります。このようなラグランジュ関数に対する付加的な項をトポロジカル項と呼びます。3次元空間中の特異点の集まりとしてのフラックスチューブ(太さ無限小のソレノイド)の存在等がある場合がその典型例となります。このときの付加的な位相はベリー位相として理解できます。この系での量子干渉効果はアハロノフ・ボーム効果として最初に理論的に予言され、超伝導体において実験的にも確認されました。また、この現象はいわゆる分数統計、分数量子ホール効果とも深い関連がありますが、それはまたの機会に、,
歴史的には、ラグランジュ関数の不定性という付加的な構造が量子化のもとでは、本質的な量子効果を生み出すトポロジカル項として理解されているのです。不思議ですね、、、

アハロノフ・ボーム効果

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2009-12-7 8:10

例えば、変圧器のなかにあるようなコイルを考えてみましょう。コイルに電流をながすとその中に電磁誘導で磁束が発生することはよく知られています。このとき発生する磁場はコイルのなかだけに存在してコイルからそとにはでないことに注意しましょう。

こんな設定で電子等、量子力学的な荷電粒子をこのコイルのそばを飛行させると磁場は全くないにも関わらずその効果をうけて例えば磁束の強さを変化させるとその大きさとともに周期的な変動が観測されるだろうというのがアハロノフとボームの予言です。磁場がないのにその効果を感じてしまうという、古典的には全く理解できない現象です。 古典的常識とはあまりにかけ離れた予言であったのでその真偽を疑うこともあったのですが、いまではこれは理論のおもちゃではなく、実際に観測されている不動の事実です。 このアハロノフ・ボーム効果はまさに量子力学的効果であり、われわれが興味を持っている幾何学的位相の重要かつおもしろい例として理解することができます。

グラフェンとは?

カテゴリ : 
研究解説:  » グラフェン
執筆 : 
hatsugai 2009-12-1 8:10

グラフェンってきいたことありますか?
物理関係の方は化学が苦手だったかもしれませんが、その中でも化学の代名詞であるかめのこ記号、すなわちベンゼン環からできている物質、炭素原子だけがあつまってできた物質がグラフェンです。グラフェンは、grapheneとつづりますが、これからおわかりのようにこの物質は芳香族の物質であり、一言でいえ ばベンゼン環が集まったものと考えることができます。


化学が得意の方にはおわかりとはおもいますが、芳香族の物質を分子量が小さいものからすこし列挙すれば、ベンゼン環1つのBenzen,ベンゼン環2つの Naphthalene,3つのanthracene, tetracene, pentacene,... と一連の物質群が続きます。グラフェン(graphene)とはその名の通りこの芳香族の2次元極限として2次元 sp2電子の炭素の2次元ネットワークが、2次元平面上無限につながったものなのです。またこれをくるりとまるめればカーボンナノチューブができあがります。


炭素は、単体の共有結合としてsp1,  sp2,  sp3 と多様な形態をとり、それぞれ、1次元、2次元、3次元の構造をつくりますが、これらに対応する自然な物質が、1次元のポリアセチレン、2次元のグラフェ ン、3次元のダイヤモンドと考えられますので、発見はおそかったのですが、極めて典型的な物質とさえいえます。

 

じつは、理科系の研究者であれば、どこかで「グラフェン」の名前ぐらいは聞いたことがあるような時代になってすでに久しいのですが、近年のグラフェンの研究 の爆発は、2005年のGeim,Novoselov等グループによる実験的合成とそこでの特異かつ極めて特徴的な量子ホール 効果の発見以来のものです。

このように構造としては基本的なのですが、 その電子構造はきわめて特異であって半導体なのですが、そのエネルギーギャップがゼロであるというゼロギャップ半導体と考えられます。通常の半導体、金属 中の電子はいわゆる有効質量近似によって質量が繰り込まれた量子的な自由粒子とかんがえられますが、ゼロギャップ半導体であるグラフェンではこれが成立せ ず有効理論はギャップレスのDirac 電子となります。Dirac の理論では負のエネルギーの電子が現象に現れないようにするため。負のエネルギー状態はすべて占有されていると考えました。これがDiracの海と呼ばれ るものですが、グラフェンの場合このDiracの海は占有された価電子バンドに他なりません。Dirac の議論は量子論を特殊相対論と整合的にするために考えられたものですので、Dirac 電子は相対論的な粒子です。その意味でグラフェンは物質中の(実は鉛筆中の)相対論的粒子と考えられます。これが近年の研究爆発の一つの理由です。個々の 興味深い物理現象に関してはまた節をかえてご説明したいと思います。


この数年グラフェンの会議で話をする機会が何度かあったのですが、その度に近年の研究状況を紹介する一つのデータとして、ネット上の論文cond-mat の検索機能findでその時点での過去1年間のタイトルにgrapheneを含む投稿論文数を検索したのですが、それは以下のようになっています。
89個(2006年),
269個(2007年),
504個(2008年)。
本日2009年に同じ検索をやってみると563個(2009年)と言うことですから、この数年は毎日1から2個はグラフェンと名のつく論文がネット上に挙げられているわけです。これを見ても、グラフェン関連の研究はまさに爆発的な状況にあることが見てとれるます。

振り返ると、この物質に関する研究は少なくともGeim等による実験的合成以前からあり、その特異な電子構造を指摘したWallaceの論文をはじめ、単 層のグラファイトとしていくつもの研究があることは思い出しておきたいとおもいます。ただしgrapheneという名前はありませんでした。うまい名前を つけることはやはり大事ですね、

磁性体におけるフラストレーションとは、古典的かつ局所的で、さらには唯一のスピン配置が自明に存在しないことと考えられます。この直接の帰結として、古典的な局所秩序変数の非存在と多数の近似的な局所安定状態の存在による特異な低エネルギーの励起ならびに低温での大きなエントロピーの存在が示唆されることになります。
一方、量子磁性体においては量子効果によりこの古典的フラストレーションと大きな残留エントロピーも解放されることが可能であり、ギャップを持つ縮退のない基底状態が実現し得ることとなるわけです。局所的な幾何学的フラストレーションにより古典的反強磁性秩序形成が強く妨げられるのに対して、量子効果による局所的なシングレット形成に伴うダイマ−液体、固体としての励起ギャップが有限である量子スピン液体相の形成はこの典型例と考えられます。

このように量子スピン液体を考えたとき、系を特徴づけるものは局所的なスピン配置としての秩序変数ではなく、局所的なフラストレーションを解放する量子的な局所オブジェクトとなります。隣接する量子スピンからなる局所的なシングレット対や4スピンからなるプラケットシングレットがその代表例です。これらの局所的な量子オブジェクトを基本とするある種の秩序相を「量子秩序」と呼んだとき、これらの相は物理系のパラメタ−の連続変形により、これらの量子オブジェクトを孤立させた自明な系と断熱的につながることが期待されるのです。これは通常の臨界点の物理が繰り込み操作により固定点の物理によって普遍的に記述されることに対比できるでしょう。励起にギャップをもつ量子スピン液体相においては繰り込み操作の代わりに断熱変形を対応させ、多種多彩な物質相における量子液体相を、孤立シングレット対からなるシングレットカバリング状態などのある種自明な量子相により普遍的に理解しようというわけです。通常の繰り込み操作では、臨界指数が繰り込み操作での不変量、特徴的な物理量であったのに対して、ここでの断熱過程においては、M.V.Berry の発見以来のベリー位相、特に時間反転対称性等により2つの値しか取り得ない Z2ベリー位相が不変量となり、局所的量子オブジェクトを特徴づけるある種の量子秩序変数となるのです。

自発的対称性の破れ

カテゴリ : 
研究解説:  » 量子液体
執筆 : 
hatsugai 2009-11-25 18:23

対称性の破れについて説明します。

スピン液体

カテゴリ : 
研究解説:  » 量子液体
執筆 : 
hatsugai 2009-11-25 18:22

磁性体をスピンの集まりと見てその絶対零度もしくは十分低温での性質を考えて見ましょう。

、物理的には許される対称性がその性質を大きく左右します。系が例えばイジング型の離散的な対称性しか持たないとき、十分低温もしくは量子効果が十分小さいときには、

幾何学的位相

カテゴリ : 
研究解説:  » ベリー接続
執筆 : 
hatsugai 2009-11-25 18:21

まず、量子力学ならび量子力学に従う物理系においては複素数が本質的であり複素数は絶対値と位相に分けられることに注意しましょう。これだけわかれば、量子力学での位相の効果のどうしても取り除けない「本質的」部分が「幾何学的位相」であると言えます。

 技術的には量子系における記述はある空間での演算子並びにある基底によるその行列要素を用いてなされます。そこでは種々の基底変換の自由度があり、それ に対応して複素量としての行列要素は変更を受けることに注意しましょう。この基底変換の自由度は完全に自由ですが、実際の量子系における古典的対応物のある物理現象はこの任 意の変換の自由度に影響を受けることは決してなく、不変な形で表現されなければなりません。数学的にはここでの(基底)変換に対応してある種のゲージ変換 が引き起こされることになるのですが、物理量はこのゲージ変換に対して不変であるというわけです。簡単な多くの場合、基底変換は行列要素の複素数としての 位相の変化をもたらします。古い量子力学の教科書等ではこの基底変換に伴って起こる位相変化は意味がないとの記述すらある1のです が、波動関数の位相なら何でもゲージ変換で完全に消去できるわけではなく、一見この勝手に変化する位相のなかにも決して無視できない物理的意義を持つ (少し拡張した意味で「ゲージ不変な」)ものがあり、それらを称して幾何学的位相と呼ぶのです。物性論における重要な概念である「量子力学的揺らぎ」、「量子干渉効果」その他、 いわゆる「量子効果」は最終的にはこの幾何学的位相として理解されることが多いのです。
この幾何学的位相が重要な寄与をする物理現象の典型例としては量子ホール効果、ベリー位相、アハロノフ・ボーム効果、分数統計粒子系などがあげられます。

1. Shiff, Quantum Mechanics

モバイル機器でご覧の方
現在の時刻
今年もやります。まずは量子力学3. 冬は 統計力学2. 平成29年の新年あけましておめでとうございます。今年もあと192日!
最新ニュース
投稿者 : hatsugai 投稿日時: 2017-04-21 19:57:50 (65 ヒット)

数理科学5 月号(2017年)に「物理学における線形代数:量子力学での展開」として小話を3つ書きました。1.量子もつれ, 2.平坦バンド, 3. ベリー接続としての単磁極.興味のある方はご覧ください.「物理学と数学のつながり」数理科学 5月号


投稿者 : hatsugai 投稿日時: 2017-03-31 17:25:38 (76 ヒット)

We have discussed a mechanical system in 3D on a diamond lattice from topological view points. Its characteristic edge states are described in connection with the quantized Berry phases. The paper has been published in New J. Phys.


投稿者 : hatsugai 投稿日時: 2017-03-28 08:30:34 (114 ヒット)

原子層科学 理論班の研究 のFacebook記事に 「傾いたり質量を持ったりするディラック粒子」 として寄稿しました。(原稿、含む英語版).原子層科学Facebookページはこちら"Tilted Dirac cones" in a facebook article of atomic layer project.


投稿者 : hatsugai 投稿日時: 2017-03-11 08:51:14 (164 ヒット)

数学セミナー4月号, 36(2017)に2016年のノーベル物理学賞についての記事を書きました。「物質中に普遍的に存在するトポロジカルな構造」ご興味のある方はご覧ください。 日本評論社

(補足:記事中の写真の並びと名前がずれてることに校正時に気づきませんでした。左からHaldane, Kosterlitz, Thoulessの3氏です。おわびの上訂正いたします。)


投稿者 : hatsugai 投稿日時: 2016-12-28 12:07:44 (174 ヒット)

We have extended the chiral symmetry to the case with tiled Dirac fermions on lattice. The paper is published in Phys. Rev. B 94, 235307 (2016)


    検索
    バルク・エッジ対応
    [0] バルクとエッジ
    [1] 集中講義
    [2] 原論文と解説
    [3] トポロジカル秩序とベリー接続:日本物理学会誌 「解説」 [JPS-HP] [pdf]
    [4] "Band gap, dangling bond and spin : a physicist's viewpoint" [pdf] [Web]
    トポロジカル相
    [0]昔の科研費
    科研費 1992年度:電子系スピン系におけるトポロジカル効果
    科研費 1994年度:物性論におけるトポロジーと幾何学的位相
    私の講演ファイルのいくつか
    [1] MIT, Boston (2003)
    [2] APS/JPS March Meeting (2004)
    [3] JPS Fall meeting, JAPAN (2004)
    [4] APS/JPS March meeting (2005)
    [5] JPS Fall meeting (2005):Entanglement
    [6] Superclean workshop, Nasu (2006)
    [7] MPIPKS, Dresden (2006)
    [8] KEK, Tsukuba (2007)
    [9] ETH, Zurich (2008)
    [10] ICREA, Sant Benet (2009)
    [11] JPS Meeting, Kumamoto (2009)
    [12]HMF19, Fukuoka (2010)
    [13] NTU, Singapore (2011)
    [14] ICTP, Trieste (2011)
    [15] Villa conf., Orland (2012)
    Web記事 カテゴリ一覧
    最新のエントリ
    Web記事 アーカイブ